
 DDI - CDI: Integrating Data for Better Science

1

DDI - Cross Domain Integration:

 Specification Overview

 DDI - CDI: Integrating Data for Better Science

2

DDI - Cross Domain Integration: Specification Overview

Version 1.0 Release

Web page: https://ddialliance.org/Specification/DDI-CDI/

Git repository: https://github.com/ddi-cdi/ddi-cdi

DDI Alliance 2025

Ann Arbor, Michigan, USA

https://ddialliance.org/Specification/DDI-CDI/
https://github.com/ddi-cdi/ddi-cdi/

 DDI - CDI: Integrating Data for Better Science

3

Copyright & License
DDI - Cross-Domain Integration Specification (Version 1.0)

Copyright @ 2025 DDI Alliance. All Rights Reserved

https://ddialliance.org/

License
DDI - Cross-Domain Integration Specification (Version 1.0 is a free specification. You can distribute it

and/or modify it under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0)

license.

This is a human-readable summary of (and not a substitute for) the license.

You are free to:

Share - copy and redistribute the material in any medium or format Adapt - remix, transform, and build

upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Attribution
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your

use. No additional restrictions. You may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits.

Notices
You do not have to comply with the license for elements of the material in the public domain or where

your use is permitted by an applicable exception or limitation. No warranties are given. The license may

not give you all of the permissions necessary for your intended use. For example, other rights such as

publicity, privacy, or moral rights may limit how you use the material.

https://ddialliance.org/

 DDI - CDI: Integrating Data for Better Science

4

Credits
Members of the Cross Domain Integration (CDI) Working Group shepherded the standard into its final

form and produced the final documentation. Listed in alphabetical order they are:

Arofan Gregory (chair)

Dan Gillman

Flavio Rizzolo

Hilde Orten

Jay Greenfield

Joachim Wackerow

Larry Hoyle

Oliver Hopt

Wendy Lee Thomas (Technical Committee contact)

Over 100 people have contributed to the development of the Data Documentation Initiative Cross

Domain Integration (DDI-CDI) specification. A more complete description of their contribution to the

work can be found at https://github.com/ddi-cdi/ddi-cdi/blob/main/CREDITS.md.

https://github.com/ddi-cdi/ddi-cdi/blob/main/CREDITS.md

 DDI - CDI: Integrating Data for Better Science

5

Contents
Copyright & License .. 3

License... 3

Attribution... 3

Notices .. 3

Credits ... 4

I. Overview ... 8

II. Purpose ... 8

III. Key Features of the Specification.. 9

A. Domain Independence .. 9

B. Datum-Oriented Data Description .. 9

C. Provenance and Process Description .. 9

D. Foundational Metadata .. 10

E. Interoperability, Sustainability, and Alignment with Other Standards ... 10

IV. DDI - CDI and the Suite of DDI Specifications ... 11

V. The Context of DDI - CDI ... 12

A. Sets of DDI - CDI Metadata: The Wrapper Element .. 14

B. Syntax Representation .. 14

C. External References and Identification ... 16

D. Catalog Details .. 17

VI. DDI - CDI Content: Summary and Business Perspective ... 18

A. The Process Model .. 19

B. Describing Data ... 20

VII. Foundational Metadata: Concept, Datum, and Variable .. 25

A. Introduction .. 25

B. Data ... 25

C. Variables: General Description ... 26

D. The Variable Cascade .. 28

1. Concept ... 29

2. ConceptualVariable ... 30

3. RepresentedVariable .. 30

4. InstanceVariable ... 31

 DDI - CDI: Integrating Data for Better Science

6

5. Relationships between Concepts, Variables, Unit Types, Universes, and Populations 31

6. Physical Datatypes .. 34

E. Populations, Units, and Unit Types ... 34

F. Concepts, Codelists, and Classifications ... 35

VIII. Data Description ... 36

A. Introduction: Reading the Model ... 36

B. Scope ... 37

C. Basic Concepts .. 38

1. Variables and Values ... 38

2. Keys ... 41

3. Data Structure Components ... 42

D. Wide Format (Unit Record Data Structure) .. 44

1. Example ... 44

2. Discussion of Structure and Diagrams – Wide .. 45

E. Long Data Format .. 47

1. Example ... 47

2. Discussion of Structure and Diagrams – Long ... 49

F. Multi-Dimensional Format .. 52

1. Example ... 52

2. Discussion of Structure and Diagrams – Dimensional .. 52

G. Key-Value Format .. 55

1. Example ... 55

2. Discussion of Structure and Diagrams – Key-Value .. 56

H. Physical Data Set (Wide Format) .. 59

I. Relational Structures using Primary and Foreign Key ... 60

J. Transformations between Formats/Examples ... 62

1. Wide and long: Correspondence between unit record data and data in a long format 62

2. Wide and Dimensional: Unit Record Data Tabulated into an Aggregate Data Cube 63

3. Long and Dimensional: Dimensional Data Represented in a Long Data Format 64

4. Key-Value and Wide: Key-Value Stores in microdata.no .. 65

5. Time series .. 66

 DDI - CDI: Integrating Data for Better Science

7

6. Key-Value Stores and Streams .. 66

IX. The Process Model .. 67

A. Introduction .. 67

B. Process Model Conceptual Model Overview .. 68

1. Steps and ControlLogic ... 70

2. Relation to Other Standards ... 73

3. Aspects covered by the DDI - CDI Process model ... 74

4. Implementation Syntaxes for Command Code ... 74

X. General Topics .. 75

A. Model Features ... 75

1. The UML subset .. 75

2. Design patterns ... 75

3. Trace relationships and other standards .. 78

4. Cardinalities and Validation .. 78

5. Inheritance .. 79

B. Syntax Representation .. 79

Appendix I: Theory of Terminology .. 80

A. Objects .. 80

B. Properties and Characteristics .. 80

C. Concepts ... 81

D. Signifier, Signified, and Sign .. 83

E. Definitions ... 84

Appendix II: Datums and Variables ... 85

A. Introduction .. 85

B. Data ... 85

C. Variables and Aggregates ... 87

D. Variable Cascade... 88

1. Concept ... 88

2. Conceptual Variable .. 89

3. Represented Variable .. 90

4. Instance Variable ... 92

 DDI - CDI: Integrating Data for Better Science

8

I. Overview
The DDI - Cross Domain Integration (DDI - CDI) specification provides a model for working with a wide

variety of research data across many scientific and policy domains. It provides a level of detail which

supports machine-actionable processing of data, both within and between systems, and is designed to

be easily aligned with other standards.

It focuses on the key elements of the data management challenges facing research today: an exact

understanding of data in a wide variety of formats, coming from many different sources. Two elements

are critical for dealing with these challenges: a flexible means of describing data that can reveal the

connections between the same data existing in different formats, and a means of describing the

provenance of the data at a detailed (but comprehensible) level: the processes which produced it must

be transparent.

DDI - CDI covers these areas in a fashion intended to make it optimally useful to modern systems, which

often employ a variety of models, and comply with a range of related specifications for both functions

related to data description and process/provenance. The model is designed to be easy to fit into such

systems, by aligning with relevant external standards, and to be align-able with them into the future.

II. Purpose
The DDI - CDI specification describes a model and supporting elements for implementing it in the areas

of data description and process/provenance. It is not intended to supplant existing specifications for

these purposes, but to fill in the information which such specifications often do not capture. For data,

this is the description of a single piece of information – a datum – which can be used to play different

roles in different data structures and formats. For provenance and process, this is the packaging of

specific machine-level processes, which may be described in many different ways, into a structure which

relates them to the business processes described at a level understandable to human users.

In order to serve this purpose, the DDI - CDI specification uses a Unified Modeling Language (UML)

formalization so that it can be mapped against other models within systems more easily. Several

different syntax expressions of the model are made available to support implementation. (For a

description of how UML is used in the model, see Section VIII. A.)

Several important features of the specification can be highlighted, to show how it serves this purpose:

• Domain-independence

• Datum-Oriented Data Description

• Provenance and Process Description

• Foundational Metadata

• Interoperability, Sustainability, and Alignment with Other Standards

Each of these will be addressed in more detail, and an outline of the specification documents is

presented.

 DDI - CDI: Integrating Data for Better Science

9

III. Key Features of the Specification

A. Domain Independence
DDI - CDI is designed to be used with research data from any domain. In order to do this, it is

fundamentally based on the structure and other generic aspects of the things it describes. It does not

attempt to be a domain model of semantics, nor a model specific to the life-cycle of a particular domain

of science or research. (Historically, DDI has focused on the Social, Behavioral, and Economic [SBE]

sciences and some types of health research – to see how DDI - CDI relates to other DDI specifications,

see Sections IV. and V., below.)

DDI - CDI is intended to be complimentary to (and used in combination with) other standards and

models which focus more on domain-specific aspects (such as semantics and life-cycle models). Such

generic elements such as classifications and variables are given a detailed formal treatment but are

agnostic as to the domain. It is left to the user to employ whatever domain semantics are demanded by

the data with which they are working.

This feature of the specification makes it well-suited to combining data coming from more than one

domain or system, to allow a description that supports systems which perform data integration,

harmonization, and similar functions. Cross-domain data sharing is becoming increasingly common, and

DDI - CDI is intended to provide support for this type of application.

B. Datum-Oriented Data Description
DDI - CDI embraces a form of data description which is based on its atomic components: individual

datums. Any given datum can play different roles in different formatting of the same data set,

depending on how it is processed and transformed. In order to retain the continuity of a given datum

across different formats and throughout a series of processes, DDI - CDI allows it to be described playing

different roles in different structures.

DDI - CDI provides four basic types of structural description for data sets: wide data, long data,

dimensional data, and key-value data. These four types (and their sub-types) provide coverage for many

common data formats today. While not comprehensive, they cover the majority of cases that the

developers of this specification have seen. These include many of the newer forms of data such as

streaming data, “big” data, registers, and instrument data. The underlying approach is one which could –

and may be – expanded in future. By assigning appropriate roles to the variables which contain the

datums across each of these different formats, however, it is possible to understand how data passes

from one form to another.

C. Provenance and Process Description
If we are to fully understand data, we also need to know how it has been processed and transformed.

Given our ability to describe how a different datum can be used in different data sets, it becomes

desirable to understand also how those data sets relate to one another in terms of the processes which

use them. This can be understood as an important aspect of data provenance.

There are many different ways of describing process and provenance. Popular models include the

Business Process Modelling and Notation (BPMN) standard and the PROV Ontology (from W3C). There

 DDI - CDI: Integrating Data for Better Science

10

are a multitude of syntaxes for driving data transformation, cleaning, and analysis in packages such as R,

SAS, Stata, MATLab, SPSS, Python, and so on. There are also some emerging standard models for

specifically describing such processes (e.g., Structured Data Transformation Language [SDTL], Validation

and Transformation Language [VTL]).

DDI - CDI attempts to do something which complements the use of such models, by connecting specific

processes interpretable by machines at the lowest level (described in a package-specific syntax or

language) with the higher-level flows which combine these into human-readable documentation of

business processes. Both traditional linear (deterministic sequencing) processing and the newer

declarative (non-deterministic sequencing) processing approaches are supported.

D. Foundational Metadata
In order to formally describe data at a detailed level, there are many component elements which

themselves must be modelled. Concepts used for statistical data but also widely applicable – including

categories and variables – are a core part of this, but the range is broad. These components are included

in DDI - CDI as “foundational metadata.”

Terminology for such constructs varies widely across domains. DDI - CDI has attempted to provide

common terms for these components, and to adopt common models from other standards where it

seemed useful.

One area which deserves particular attention is the “variable cascade” – a model for how data are

described at different points in their creation, processing, and use, which is designed to optimize reuse.

While many different models have a “variable” of some form, the one presented in DDI - CDI reflects the

experience of working with this important construct in many of the specifications and standards which

have preceded it. It is a nuanced view of how variables relate and are understood across different

systems, and – although not simple – it is a powerful model which helps solve some of the commonly

encountered problems in data description and management.

E. Interoperability, Sustainability, and Alignment with Other Standards
DDI - CDI is fundamentally a model which is intended to be implemented across a wide variety of

technology platforms, and in combination with many other standards, models, and specifications. To

support this use, it is formalized using a limited subset of the Unified Modelling Language (UML) class

diagram part (UCMIS - UML Class Model Interoperable Subset). The model is provided in the form of

Canonical XMI (restricted XML Metadata Interchange) – an interchange format for UML models

supporting the import into many different modelling and development tools. Further, syntax

representations are provided in XML Schema and RDF/OWL (with serializations in Turtle and JSON-LD),

so that direct implementations of the model are possible if needed.

The platform-independence of the model makes it more easily applicable across a broad range of

applications and helps ensure that it will be sustainable even as the technology landscape evolves.

DDI - CDI builds on many other standard models and is aligned with them where appropriate. This is

shown in the model itself, where formalizations from other models and specifications are refined,

https://ddialliance.org/Products/SDTL
https://sdmx.org/?page_id=5096
https://sdmx.org/?page_id=5096
https://bitbucket.org/ddi-alliance/ucmis/src/master/

 DDI - CDI: Integrating Data for Better Science

11

extended, or directly used. The specification includes a description of what these other standards and

models are, and how they are used in DDI - CDI.

IV. DDI - CDI and the Suite of DDI Specifications
DDI - CDI is a different type of specification than its predecessors. It is not a continuation of or

replacement for earlier DDI specifications such as DDI Codebook or DDI Lifecycle. It is intended to be

complementary to these specifications for those applications – which were mostly in the SBE sciences –

where DDI is used.

DDI - CDI builds on the work of many years in the DDI 4 “Moving Forward” project (not to be confused

with the DDI Lifecycle version 4.0) and brings some of the strengths of that effort to light. In this, it

shares many features with later versions of DDI Lifecycle, which has also incorporated some of that

work. Notably, the “variable cascade” comes from earlier DDI 4 “Moving Forward” models (and its

antecedents, like the Generic Statistical Information Model [GSIM]), as does the overall approach to

describing non-rectangular data.

The DDI - CDI Model is the first specification produced by the DDI Alliance which uses a conceptual

model expressed in UML as its basis. It is intended to describe many of the types of data which earlier

DDI specifications describe. Due to the way in which data today is increasingly used across traditional

domain boundaries, however, DDI - CDI is also (and of necessity) capable of describing data from many

related domains.

The purpose of the specification differs somewhat from the earlier DDI Codebook and DDI Lifecycle

specifications. Due to changes in the way in which information technology is applied to research and

statistics, some new features are emphasized. Notably, the diversity of data types analyzed in a given

project has increased, and the range of sources for that data has grown, with corresponding changes in

the technology used to manage it.

The functional goal of the specification is also different: where DDI Codebook was an XML

representation of a data dictionary, and DDI Lifecycle a more complex model designed to support

metadata from data conception and capture through publication and reuse, DDI - CDI is an attempt to

describe data and its provenance independent of these contexts.

Both DDI Codebook and DDI Lifecycle combine the description of structure (e.g., a table of records) and

the description of meaning. In both, the primary structural form is a table or a cube. A variable and a

column (for tabular data) are basically synonymous. DDI - CDI disentangles structural description from

description of meaning. This allows description of structural forms like long (also called “tall”) tables or

key-value stores.

The growing demand for data from different sources, and from external domains, requires that some

different types of data be described. The provenance of this data – that is, the processes by which it has

been assembled for use – are of increasing importance in understanding what it is and how it can be

used. While traditional SBE data was often collected using questionnaires, alternate sources of data such

as registers (such as administrative records for marriages, employment, etc.) and sensors are becoming

 DDI - CDI: Integrating Data for Better Science

12

increasingly common and have in some cases always been typical. New sources of data from social

media and other sites are also increasingly used.

The DDI - CDI model applies the important features of the pioneering (but unreleased) DDI 4 “Moving

Forward” work to these functions: describing various types of data in a way which makes them subject

to integration and transformation into usable forms, and providing the information needed to

understand their origins and provenance.

Because the way in which such a model can be implemented is more variable than it is for traditional

SBE data management systems, the emphasis in DDI - CDI is on a model, formalized in UML, and made

available using the Canonical XMI format. This expression of the model is the canonical form. It supports

the exchange of UML models between various tools, including both modelling and development

environments. While the XML syntax representation for metadata instances is still supported, it is no

longer the canonical (official) format for the specification, as it is for DDI Codebook and DDI Lifecycle.

DDI - CDI is aligned with earlier DDI specifications, most notably DDI Lifecycle, as we anticipate that DDI -

CDI might be used as an integration model for systems based on these earlier specifications. The

intention is that DDI - CDI be a tool which can supplement systems using earlier versions of DDI, enabling

them to better handle new types of data.

V. The Context of DDI - CDI
The purpose of this section is to show how DDI – Cross Domain Integration (DDI - CDI) fits into the

overall context of research and the metadata which is used to describe research activities and resources.

It is expected that metadata not described in DDI - CDI will exist in most (if not all) implementations, but

that such metadata will often be specific to the domain, infrastructure, or system in which the

implementation is built. DDI - CDI has several basic techniques for tying the metadata it describes into

the larger set of information used. These include references to non-DDI - CDI metadata descriptions

such as catalog descriptions (presumably structured in a fashion meaningful to the system according to a

standard), a mechanism for making more granular “external” references to concepts, vocabularies, and

other metadata resources (again, presumably structured in a standard fashion), and the availability of

granular identifying, cataloguing, and citational information on a large number of DDI - CDI objects,

allowing them to be referenced in turn.

The illustration below shows an example of how DDI - CDI metadata might fit into a larger information

set employed by a domain-specific implementation. Only the areas labelled “DDI - CDI” are covered by

the present model – all other boxes are examples of the type of non-DDI - CDI metadata standards with

which it is intended to be integrated. (They are only illustrative examples, and do not convey any

preference for nor comprehensive listing of such standards.)

The dark blue box contains several different types of metadata modelled according to DDI - CDI – in this

example, we have three different data sets which represent different manifestations of the data as it

passes through a process of some kind.

 DDI - CDI: Integrating Data for Better Science

13

The orange box represents Data Catalog Vocabulary (DCAT) catalog entries describing these three data

sets, and making reference to the variable descriptions provided by the more granular DDI - CDI

metadata.

The green boxes represent other DDI metadata according to different specifications. The DDI Codebook

instance contains a description of the overall research effort which produced the data, giving

information on the methods used in collecting and producing the data. The DDI Lifecycle instance

contains a granular description of the questionnaire which was used during data collection. The light

blue boxes represent additional information described according to PROV (for a step-by-step description

of the process) and VTL (for descriptions of specific functions which were applied to the data) as it was

transformed from one data set to another at specific points in the processing. These are referenced

from the overall process description provided by the DDI - CDI process description. (They might also

reference each other, although that is not shown here.)

The red box represents a set of Simple Knowledge Organization System (SKOS) concepts used as DDI -

CDI concepts, code lists, and categories in the representation of variables and their definition.

Dotted lines represent references made external to the DDI - CDI instance metadata, which will vary

depending on what syntax representation is used, but will typically consist of URLs.

To facilitate this type of referencing and linking, three basic features of DDI - CDI will be introduced, so

that the use of these features will be clear for understanding the more detailed description of the

model, below. These are CDI Content, (external) References, and Catalog Details.

 DDI - CDI: Integrating Data for Better Science

14

A. Sets of DDI - CDI Metadata: The Wrapper Element
There is a notion of a set of CDI metadata, collected for a specific purpose, such as describing a

collection of data and its related metadata, providing metadata for reuse, describing a process, etc. This

type of package will be implemented in different ways according to the syntax employed. In the XML

Schema syntax representation, it is termed “Wrapper”. It is an XML element which describes a single

object acting as the container for any metadata appearing within the DDI - CDI model organized for a

particular purpose – the metadata of interest as determined by the user.

The notion of “internal” versus “external” in DDI - CDI is always made in reference to this idea of a

discrete set of metadata, pulled together for a purpose. Because this type of a packaging mechanism

often has corresponding constructs in other standards and models, there is an external reference (see

Section V. C.) to some other metadata which is assembled at the same level as the Wrapper for the

purposes of a particular application, but which is not modelled according to DDI - CDI.

For example, in the DDI Codebook metadata standard there is a notion of a “Study”, which brings

together a package of metadata concerning a set of data files and related metadata from a data

production or use activity, at a specific time, to support a distinct research effort. An example would be

the collection of files for one wave of a large social survey, or some census within a country.

While the data and processes of such a “Study” could be described in DDI - CDI (and indeed could largely

be generated programmatically from it in some cases), some of the other metadata contained in the DDI

Codebook instance for those data files could not. The idea here is that a metadata set can reference a

complimentary set (or sets) of metadata which are needed to support application functions, exchange,

etc. alongside the DDI - CDI metadata.

In this case, the connection to the source or supplemental metadata is not lost when DDI - CDI is

employed to describe specific parts of the overall information set. Different syntax representations of

the model will have different mechanisms for making these references. In the XML representation, the

packaging element called “Wrapper” is used.

In the XML representation of the DDI - CDI model, the attribute “supportingInformation” is used to make

an external reference to one or more complementary metadata sets. For this purpose, it would be used

to make an “external” reference using the standard CDI structure (see Section V. C.).

Note that in the XML the Wrapper element may also be annotated with CatalogDetails (see Section V.

D.).

For bindings in RDF other properties could be used, according to the RDF vocabulary employed to

package the metadata. (For example, a DCAT Dataset might have a Relationship property, qualified

appropriately with a hadRole property, to a CatalogRecord. This will be dependent on the syntax

representation of the DDI-CDI model.)

B. Syntax Representation
DDI - CDI is intended to be implemented with a variety of syntaxes. While some reference syntax

implementations will be provided (the XML and RDF syntaxes are part of this release) it is understood

that many others will also be generated. This section briefly describes the approach to syntax

 DDI - CDI: Integrating Data for Better Science

15

implementation taken by DDI - CDI. This can have a significant effect on how DDI - CDI is combined with

other standards as described above.

The DDI - CDI UML model is the central component in the specification: all syntax representations are

assumed to align with specific elements of the model. Different communities of use are expected to

identify which parts of the model they are using, and to further indicate how those parts of the model

will be expressed in their target syntax. The reference syntaxes serve a dual purpose: both as direct

implementations of the model, and as reference points for communities of users to describe their own

implementations. The selection of constructs from the model, and their syntactic expressions should be

documented by user communities, including whatever controlled vocabularies are assumed in

processing their DDI - CDI instances.

Because the set of syntaxes is not specified by DDI - CDI, it has been necessary to provide a more

complete set of classes, relationships, and attributes than may be required for some syntaxes. A primary

example of this can be seen in RDF: by its nature, the RDF families of technology assume that linking on

the Web is the basis for both identification of resources and their retrieval, and that many resources will

be made available in a decentralized fashion. While these assumptions are good ones for the

applications RDF is intended to support, they may or may not align with the needs of specific user

communities in their production, management, and sharing of data and metadata.

From an RDF perspective, DDI - CDI is probably too baroque when it comes to matters of identification

and linking, as a result of the broader requirements it is intended to fulfill. When implementing DDI - CDI

in RDF syntaxes, it makes sense to “flatten” some of the more baroque constructs so that they fit more

naturally.

Implementers should be aware of this aspect of the DDI - CDI design, but should also be aware that

users of their resources may not share the same assumptions about syntax implementation. In cases

where the model has been “flattened” to align with a particular syntax, care should be taken to do this

in a consistent way that can be “un-flattened” when transformation into another syntax is wanted.

As an example, in an implementation where all identifiers are referenceable URLs, it may be desirable to

flatten the Reference type in DDI - CDI into a single one of its fields (the URI) and to only permit

resolvable URLs to populate attributes using that type. So long as this is done consistently, a community

whose technology does not align with such an approach should be able to programmatically restore the

“flattened” missing structure if needed. In most cases, taking a consistent approach to the model for

such syntax representations is sufficient to guarantee the intended level of interoperability across

communities of use.

 DDI - CDI: Integrating Data for Better Science

16

C. External References and Identification

Figure 1: Identifier and Reference Classes

DDI - CDI employs a generally consistent mechanism for making references to information objects

outside the scope of an instance of DDI-CDI metadata. Such references are termed “external”

references.

It should be noted that this mechanism may also be used for some types of “internal” references,

notably in cases where the target for such a reference is very broad, or to avoid some types of cross-

package dependencies in the UML model.

The Reference type allows for several types of links to other classes. It will generally have a semantic

associated with it by the attribute using it, but this can be further qualified as needed through the use of

a controlled vocabulary. There is also a field for providing a description of the reference in plain text.

The mechanisms for linking include several fields. Among these are fields for providing a DDI-

conformant identifier, a non-DDI-conformant identifier which is not expressed as a URI, or a URI of some

type (including URLs). The attribute Location is provided to allow for linking in other cases (such as links

to non-digital or local resources). Deep linking – the addressing of internal segments of the referenced,

identified entity – is also supported, in line with the W3C specification for this function.

In the example pictured in the section introduction above, the links between and among DDI - CDI

objects might or might not use this mechanism, but the references to SKOS Concepts, SDTL scripts, and

 DDI - CDI: Integrating Data for Better Science

17

the DDI Codebook “Study” metadata (etc.) would be external references using the mechanisms supplied

here.

It is incumbent on implementers to provide guidance when defining the subset of DDI - CDI constructs to

be used, including their syntax implementation (if different from those provided with the specification).

References such as those described here could easily be “flattened” into simple URLs for

implementation in RDF, for example. This is an intended feature of the model’s design: the richness of

the model need not be “completely” expressed in cases where the needed function is better handled

using an equivalent syntactic mechanism.

In the example above, it might be the case that the only allowed content within a community

implementation for an attribute of the Reference type pointing to a Concept would be a URL to a target

conforming to the SKOS vocabulary.

D. Catalog Details
DDI - CDI metadata is not only a platform for referencing other metadata, but may itself be referenced.

In the example above, a catalog entry expressed in DCAT would be making a reference to a DDI - CDI

information set for the purposes of exposing variable descriptions and other details of the catalogued

data sets.

In order to be referenced from across a wide variety of potential sources, DDI - CDI provides the

CatalogDetails type. This supports the provision of public (non-CDI) identifiers and other citational

information, access information, summary and provenance information, links to related resources, and

the ability to assign a type to the object from a controlled vocabulary with values meaningful to

potential processors.

While it may be typical to simply reference metadata objects with their assigned CDI identifiers, the

ability to capture other identifiers may be very useful. In those cases where immediate access to the

described object is not desirable (due to constraints of size or access) the summary information may

also provide an easy way of capturing brief descriptions of the metadata object for presentation to

human users. Provenance, access, and citation information is also important in its own right.

For these reasons, CatalogDetails is made available as an attribute on many of the publishable and

reusable metadata objects in CDI, including Data Sets and Data Stores, Classifications, Concepts,

Individuals and Organizations, and elsewhere.

 DDI - CDI: Integrating Data for Better Science

18

Figure 2: Catalog Details

VI. DDI - CDI Content: Summary and Business Perspective
The DDI - CDI model offers a range of different metadata classes by which different aspects of data can

be described. Ultimately, DDI - CDI aims to support an understanding of any given data by providing a

complete set of information regarding its structure, provenance, meaning, and access through the

models it provides and by connecting to other standard models.

That said, the specific portion of the DDI - CDI model which will be used in any given application or

community depends on what information is needed to support exchange, reuse, and integration, and

what elements of that information set already has a standard expression which can be readily consumed

by all relevant users. DDI - CDI is intended to be useful in filling these gaps, and pulling together

otherwise unconnected information regarding data and the processes from which it comes.

This section of the document provides a high-level overview of how DDI - CDI describes the business-

level processes around data, and then looks at how the data itself is described. The following sections

will cover the foundational constructs used, and provide greater depth of detail on both process and

data description.

 DDI - CDI: Integrating Data for Better Science

19

A. The Process Model
DDI - CDI process description starts with the environment in which the process occurs, represented by

the Production Environment class.

Figure 3: Process Model High Level

The DDI - CDI Process Model is intended to be usable in every type of Production Environment. It

supports the description of control systems employing both deterministic and non-deterministic

sequencing. Deterministic control systems use deterministic control logic. Non-deterministic control

systems include rules-based systems and systems that employ machine learning.

Note that the DDI Core Process Model traces to PROV-O (and thus can be connected to extensions of

PROV-O such as ProvONE). This is because the process descriptions in the DDI – CDI model are intended

to support the description of process as provenance documentation (as well as to potentially

describe/drive execution, which goes beyond what PROV-O is intended for). This is significant – in past

versions of DDI, the process model has been designed to both describe workflows (DDI 4 “Moving

Forward” Prototype) and the flow of questionnaires and related processing (DDI Lifecycle, DDI 4

“Moving Forward” Prototype) in sufficient detail that they can drive the execution of data processing

workflows and questionnaires. In DDI – CDI the focus of the process description is primarily the

documentation of provenance, but that it employs a similar model to other DDI specifications, and can

 DDI - CDI: Integrating Data for Better Science

20

potentially support some of the execution cases as well. Note that DDI – CDI uses References to point to

the “entity” in PROV-O, which can be to data at a granular level (variables, datums, etc.), the

documentation of specific workflow types, and the evolution of workflows as occurs in machine

learning.

B. Describing Data
The DataStore comprises data, potentially of different types. Significant among these are data sets. DDI -

CDI provides a detailed description of data and the structures which are used by different types of data

sets.

Some of the most significant information classes – those related to describing data – are a major focus if

the DDI - CDI model. The diagram below shows a more detailed view of how data fits into the

production system.

 DDI - CDI: Integrating Data for Better Science

21

Figure 4: Data Description Hierarchy

The mechanism for describing data structures in the DDI - CDI model provides four basic types: Wide

Data, Long Data, Multi-Dimensional Data, and Key-Value Data. These types represent different styles of

describing data structures, using a consistent set of components for identification, grouping

observations into records, adding descriptive fields, and so on. The differences between each type of

data description are found in the roles played by these different components.

The four types are characterized as:

Wide Data: This is a way of describing traditional rectangular unit-record data sets. Each record

has a set of observations about a single unit. The record has a unit identifier and a set of

 DDI - CDI: Integrating Data for Better Science

22

measures and/or descriptors which are the same for each unit. The unit identifier can be used as

an identifier for the record, because each unit has only one.

Long Data: This is a technique for describing many common types of data, including sensor data,

event data, and spell data. In this form, each record has a unit identifier and a set of measures

and/or descriptors, but there may be multiple records for any given (observed) unit. The

identification of the record is a combination of the unit identifier and one or more other fields.

These are sometimes referred to as “tall” data sets.

There are two refinements of the Long Data class which further constrain it to correspond with

Event Data (defined as Long Data for which an observation time is provided as a single point) ,

and Spell Data (Long Data with fields for start and end times bounding a period). In both of

these, the record identification involves time as well as the unit identifier.

Multidimensional Data: Multi-dimensional data is data in which observations can be identified

using a set of dimensions. These values both identify the cell and serve to describe the

measured population. Records may be organized in various ways and may include descriptors as

well as their dimensions and measures. It is common to view such data sets as multi-

dimensional Cubes, and also to describe them as Time Series. These specific approaches are

defined as sub-types of DDI - CDI’s multi-dimensional data.

Key-Value Data: Key-Value Data is data which consists of a set of measures, each of which is

paired with an identifier. Descriptors may also be attached to these pairs. Such data is often

organized in more complex ways when it is used but may be stored or exchanged using this

simple construction.

It should be noted that relational data is not an explicit type in DDI - CDI, but can be described using the

model. Relational data is typically a set of Wide Data tables connected through the use of keys. While it

may be preferable for interoperability to describe the results of queries as single data sets in DDI - CDI, it

is still necessary in some scenarios to describe the full relational structure. DDI - CDI uses the Primary

Key and Foreign Key classes to capture the relationships between tables.

To understand how DDI - CDI provides a generic description of data across these different types, it is

useful to consider how they are built from the perspective of DataPoints. DataSets are collections of

DataPoints that can be further organized and described by a DataStructure.

 DDI - CDI: Integrating Data for Better Science

23

Figure 5: Data Point and Instance Variable

A DataPoint is described by an InstanceVariable and is a placeholder for a value in its ValueDomain. A

value in our model is called InstanceValue to distinguish it from the ConceptualValue of which the

InstanceValue is the representation (more on this below).

Consider this example:

This (wide) table shows a fragment of a DataSet with six InstanceVariables (column headers), and 12

DataPoints (the cells in gray), and 12 InstanceValues (the content of the cells). For instance, “Female” is

an InstanceValue of the Sex InstanceVariable, and “73.7” is an InstanceValue of the Longevity

InstanceVariable.

At this point the InstanceVariables may or may not have a physical datatype. At first glance, the

“Female” InstanceValue seems to be a String whereas “73.2” seems to be a Decimal. However, there are

two caveats here: (i) each platform has different specific datatypes for similar syntax representations,

e.g. VARCHAR, String, etc. and we don’t know at this point the platform nor the syntax representation,

and (ii) the data type might be indeterminate, in which case the InstanceValue could default to the

universal base class1 of the underlying platform/syntax representation.

1 A universal base class is a term used in programming languages to denote the top or universal type of a

type system, usually represented by ⊤. The notion of universal base class is also present in multiple

syntax representations. Some common ones are:

 DDI - CDI: Integrating Data for Better Science

24

As the data is analyzed and processed, and its meaning is clarified and better understood, the

InstanceValue’s universal types are cast to more detailed data types in successive DataStructures. The

data doesn’t need to change in this process, only our understanding of it. Using universal base classes it

is not necessary to have precise data type definition to start doing analysis and processing. The model

provides a few extensions of InstanceValue, e.g., ValueString and RangeValue, which can be used once

the datatypes are better understood. Other extensions will be considered (or may be specified by user

communities in specific implementation guides).

Another application of top types is for multimedia content, in which DataPoints can contain pretty much

anything that can be represented in a platform, from images and videos to sound and complex data

structures. There are multiple instances of this in health care, satellite images, maps, etc. in which an

Instance Value could be multimedia or data organized in a structure not-known in advance, e.g. XHTML.

(It should be noted that DDI - CDI is not designed to support these cases in the current release, but that

support for these cases is anticipated in future.)

InstanceValues and DataPoints can be designed in different ways in the different syntax representations.

For instance, in XML Schema a DataPoint can be an element containing an InstanceValue attribute or

sub-element, which can be defined as “any”, in its various XSD forms, or as more specific XSD data types

for ValueString and others when the understanding of the datatype is clear. In RDF, it could be a triple in

which the DataPoint is the subject, InstanceValue the object, and the association between them the

actual predicate. InstanceValue could be just owl:Thing for the most generic datatype case, or any more

specific OWL datatypes as necessary.

As we mentioned before, there is a conceptual side to the InstanceValues. The concept associated with

an InstanceValue is called a ConceptualValue. A ConceptualValue is just a Concept with a computational

model associated with it, reflecting its meaning. This is important in comparing concepts and

determining when they are the same.

• Object – in Java, JavaScript, C#, Smalltalk;

• object – in Python;

• Any – in Scala;

• <xsd:any>, <xsd:anyAttribute> and xsd:anyType – in XML Schema and related languages;

• owl:Thing – in the OWL Web Ontology Language.

Resorting to top types is critical in many applications in which data is either heterogenous or its type is

unknown, like in many Big Data applications, Hadoop, and other modern data processing platforms. For

instance, when ingesting data from outside an organization it is common to use data lakes and related

technologies to persist the data in raw form and then apply schema on-read when necessary (i.e., when

the data needs to be used, as opposed to when the data is stored).

 DDI - CDI: Integrating Data for Better Science

25

An InstanceValue is a value from the ValueDomain of an InstanceVariable (the InstanceVariable

associated with the DataPoint where the InstanceValue is stored). Similarly, the ConceptualValue it

represents is a Concept from the ConceptualDomain of the associated ConceptualVariable.

 In DDI - CDI, then, a datum is the combination of an InstanceValue and a ConceptualValue. This may be

a point of confusion when comparing CDI to other standards where a datum is defined more like the CDI

InstanceValue.

VII. Foundational Metadata: Concept, Datum, and Variable

A. Introduction
This section considers how data can be understood and modelled from a granular perspective. Such a

topic can become very technical, and a high degree of precision is required for completeness. The

Appendixes provide a description of the DDI - CDI model at this level. Here, we will approach this topic in

as understandable a fashion as possible, accepting that a more-complete formalism requires some of

the detail we will not address here.

Working upward from the individual values found in data, we will explain how concepts are attached,

and how these are arranged in modelling variables. The “variable cascade” is a nuanced model of

variables which is at the core of how DDI - CDI describes data, and how it can then be arranged in

different structures without losing its meaning.

B. Data
Data is modeled as a set of organized atomic structures, which perform different roles in relation to the

data, but which can be associated with concepts to give them meaning. If we consider the most granular

bits of data – something termed a Datum in DDI - CDI – we can build up from this to understand how the

data is arranged in meaningful, reusable sets. These reusable sets – variables – can then provide the

basis for describing higher-level constructs composed from them.

A Datum can be thought of as the contents of an individual cell in a table, or the value stored in a single

field in a data set or stream. As described in the section above, a Datum has an encoded representation

in a physical sense: what is termed an InstanceValue. The Datum associates this with the meaning of

that representation, which is termed a ConceptualValue. In the DDI - CDI model, we see that the Datum

combines the InstanceValue with the ConceptualValue that it denotes. Thus, the Datum becomes an

easy way to point simultaneously to both the granular representation appearing physically in the data

and the direct meaning of that representation.

(The term “instance” is used in opposition to the term “conceptual” when describing Datums, because

one of the primary functions of DDI - CDI is the description of how data can be re-arranged into different

data structures, which relies on similar Datums being grouped into variables. An “instance” is one

appearance of the member of such a group. This in turn allows us to describe now the many instances of

these groups can form parts of higher-level constructs.)

If we have a string “2” in our data – an InstanceValue – we can associate this with the number 2 - the

corresponding ConceptualValue – rather than being a code which represents the idea of being “married”

 DDI - CDI: Integrating Data for Better Science

26

or some other categorical concept. The Datum is a single class which describes – in this example -

objects such as the value “2” logically being the corresponding number. (A ConceptualValue is defined

by a formal Concept in DDI - CDI, but this is only one of the many roles which concepts perform in

relation to data.)

The Datum should not be understood as providing a “datatype” for the field – that is a more complex set

of relationships which will become apparent as we more fully describe how variables fit into the picture.

Similarly, complex sets of coded categorical values will also be described elsewhere in the model. The

Datum is a simple joining of the InstanceValue and the ConceptualValue.

Any given Datum exists within the bounds of an InstanceVariable: a description of all of the similar

Datums existing within a given structural context. We can think of this as a column appearing in a table,

where all of the values in the column are of a similar type, and share a similar form of representation. In

our example, the column might be the variable Age, indicated with a number represented as an integer.

Variables are commonly understood as groups of similar values in this way, but we can describe several

different types of variables (see Section VII. C.).

InstanceValues may also perform other functions in relation to data, but their pairing with

ConceptualValues through the Datum is their primary role within DDI - CDI vis-à-vis the assignment of

meaning to data values.

C. Variables: General Description
Variables are groups of values which measure or describe the characteristics of real-world objects,

which we term “units”. They function both as a way of helping to organize where such values are

located (as a column in a table, for example) and as the potential for such values – a variable exists

independent of whether it has already been populated or not, as a sort of template for a particular type

of value.

Further, Variables are used to assign values to each unit in a group of units of the same type (termed a

“population”). The values represent measurements taken on the units, based on a characteristic of the

population, which defines the Variable. For example, a population of US children might have age as a

characteristic. The age Variable is used to record an age for each child.

Describing variables is, therefore, a vital part of understanding data. There are three levels in the

description of variables in DDI - CDI, corresponding to different aspects or uses of the variable.

The Datum is directly associated with an InstanceVariable: within that specific set of data, all the Datums

within a group which performs a single function (that is, all the values in our Age column) will be

grouped as a single InstanceVariable.

Some properties of the InstanceVariable only exist within the context of the data set in which it appears.

Thus – because the data measures a discrete set of objects (the Units which make up the Population in

DDI - CDI terms) – there is a relationship between the InstanceVariable and the Population which it

describes.

 DDI - CDI: Integrating Data for Better Science

27

For each Unit in the data – say, a specific child – the Age variable will provide a value. The set of children

being measured would constitute the Population in our example, and the data would be made up of

measurements of that group of children.

When we have a similar variable in a different data set, it is no longer identical to our InstanceVariable:

it may share many other properties, but specifics about each data set are going to differ.

One possible way the variables differ is the Population. Suppose age is measured for children in two

school districts, A and B. For the children in School District A, I will have a set of data which has an Age

column, where my Datums contain an integer, one value for each child in the Population. For School

District B, I will have a similar set of data, differing only in the Population it describes (it is a different

group of children): my Datums in that column will again be integers giving the age of each child.

This reusable form of the variable description – the one which is the same across our two data sets – is

termed a RepresentedVariable in DDI - CDI. Every InstanceVariable inherently contains the description of

a RepresentedVariable, but adds some context-specific information to it (such as the specific Population

it measures).

In many data sets, there may be variables which measure the same thing, but do so in different ways.

For example, I might choose to represent the Age column for the children in School Districts A and B as

an integer, but to use a code for those values in the same type of data for School District C, where I have

grouped the integers into three-year cohorts (1-3 years, 4-6 years, 7-9 years, etc.). Further, I might

assign codes to these types of cohorts.

When two data sets contain InstanceVariables which are represented in the same way, this is termed a

RepresentedVariable. Thus, for the example above, the data sets for School Districts A and B would

contain the same RepresentedVariable – a measurement of age as an integer – while the data set for

School District C would not, because the Population and the way in which the values are represented are

different. (Note, however, that the Universe of these two data sets would still be the same – see Section

VII. D. 5.)

All three data sets still share a high degree of similarity, however: they all measure a characteristic of

children – Age – and they all describe the same real-world Units (children, the type of the members of

each Population). This level of a variable description is termed a ConceptualVariable in DDI - CDI. While

the representation of values may differ the characteristic being measured, and the UnitType of that

measurement, are the same.

Again, inherent in every InstanceVariable is a ConceptualVariable. This is also true of

RepresentedVariables – each adds some specific information (the representation of the values) to the

information needed to describe a ConceptualVariable (the Concept of the characteristic being measured

for a particular UnitType).

Systems may choose to only manage InstanceVariables, only Instance and RepresentedVariables, or

variables at all three levels. This depends on the kinds of reuse the system is designed to support, but

we can see very distinct patterns of reuse at the different levels: InstanceVariables exist only within their

data set context, for a particular Population. RepresentedVariables may appear across many different

 DDI - CDI: Integrating Data for Better Science

28

data sets, and across data sets with different structures, so long as they represent the values in the

same way. ConceptualVariables are reusable so long as they are measuring the same characteristic of

the same type of Unit.

The diagram below shows how these patterns of reuse occur in related sets of data, in this example for a

set of studies containing variables measuring marital status:

It should be noted that some data includes specific measurements of individual units, while other data –

aggregates – describes groups of individuals. These types of measurement both use the kinds of data we

describe, although they are often structured differently (see the Appendixes).

This three-level model of variables is termed the “variable cascade,” and it is central to how DDI - CDI

describes data. We will explore this model in greater detail in the next section.

D. The Variable Cascade
In DDI - CDI, the variable cascade is the way the descriptions of variables are managed. The main
purpose of the cascade is to increase the reuse of metadata. The features defined at each level of the
cascade do not depend on features at any of the lower levels. Because of this, the descriptions at each
level are reusable.

The cascade consists of four levels, each level corresponding to an ever-increasing descriptive detail. The
levels in the cascade are

▪ Concept
▪ Conceptual variable
▪ Represented variable
▪ Instance variable

 DDI - CDI: Integrating Data for Better Science

29

The diagram below shows these levels and some related classes:

The names of the levels indicate to the user what the main focus of the description is at each. The
Concept and Conceptual Variable provide details about the concepts employed. The Represented
Variable and Instance Variable provide the details about the codes, characters, and numbers
representing the concepts at the higher levels.

We will describe these levels and show how they fit into the terminological approach in the following
sections. In tables in each section, we illustrate the approach with two examples. The attributes are
taken from the class diagram of DDI - CDI. We only illustrate the attributes at each level. The inherited
ones from the level above are assumed.

1. Concept
The variables about some subject share that subject as common among them all. For example, all
variables in use in data sets in a research library about marital status share that Concept. There may be
little in common about the marital status as measured in each variable, but marital status itself – the
fact there are statuses across societies or cultures – is a common characteristic. The Concept expressing
this commonality is the purpose of this highest level.

 DDI - CDI: Integrating Data for Better Science

30

The Concept at this level is very generic, because it must account for all possible variations of the more
specialized versions attached to each variable that makes use of it. The table below gives some
examples.

Concept

ID Name Definition

1 Marital status Category of current marital arrangement

2 Age Whole number of years of operation

3 Velocity Change of position per unit of time

2. ConceptualVariable
The ConceptualVariable is the level at which most of the Concepts used to describe a variable are
applied. The main Concepts are specialized applications of the Concept to a type of Unit, and the nature
of the measurement or description to be made. In our marital status example, the main Concepts are:

▪ Specialized application: marital status
o The specialized nature of this Concept is that it is applied to people living in the US (for

instance)
▪ Measurement: kinds of marital status

o Single
o Married
o Divorced
o Widowed

Both the Concept being measured (marital status) and the distinct measurements (kinds of marital
status) are Concepts. The values used to capture the measurement are known in DDI - CDI as
“substantive values.”

Additional Concepts are those associated with missing data. These are known as “sentinel values.” The
two most common examples seen in survey data (and expressed in the statistical packages such as SPSS
and Stata) are “missing” and “refused”. There may be others, depending on the processing system and
the data being described.

3. RepresentedVariable
The main addition at the RepresentedVariable level are the substantive categories. In our example, we
might end up with the following designations:

▪ <s, single>
▪ <m, married>
▪ <d, divorced>
▪ <w, widowed>

 DDI - CDI: Integrating Data for Better Science

31

The set of these designations is a SubstantiveValueDomain. These Concepts are associated with the
subject matter of the variable, not with processing. A SubstantiveValueDomain can be used by many
RepresentedVariables, so it is important to identify and manage them.

4. InstanceVariable
Moving further down the chain to data, we get to the InstanceVariable. An InstanceVariable is intended
to be a variable used in a data set. For each data set, new InstanceVariables are created.

The main addition in specificity is giving the sentinel categories designations. Further, the list of sentinel
values (designations) are managed in one set, the SentinelValueDomain. Separating the substantive and
sentinel value domains eases the burden on metadata management. Changes needed in one kind of
value domain do not affect the other.

An example of the designations in a sentinel value domain is:

▪ <m, missing>
▪ <r, refused>

Since, the InstanceVariable is associated with data in a data set, then the datatype of the data for that
variable is necessary information as well.

5. Relationships between Concepts, Variables, Unit Types, Universes, and Populations
In the diagram above, we see the variable cascade, and set of classes which describe the Units,

Universes, and Populations for which the variables describe characteristics. There are important

relationships between them that must be understood, but which may not be immediately obvious.

 DDI - CDI: Integrating Data for Better Science

32

Figure 6: Inheritance chains for Concepts: Examples of Instances

The list of intended uses of the “uses” and “measures” associations is as follows:

• A ConceptualVariable uses a Concept

• A RepresentedVariable uses a ConceptualVariable

• An InstanceVariable uses a RepresentedVariable

• An InstanceVariable uses a ConceptualVariable

• A Universe uses a UnitType

• A Population uses a Universe

• A ConceptualVariable measures a UnitType

• A RepresentedVariable measures a Universe

• An InstanceVariable measures a Population

The different types of variables – ConceptualVariable, RepresentedVariable, InstanceVariable – are

related via the inheritance (also called “specialization”) chain. An InstanceVariable is a specialization of a

RepresentedVariable, which itself is a specialization of a ConceptualVariable. All of these classes are

specializations of the Concept class.

A similar chain of inheritance is in operation among the UnitType, Universe, and Population classes

(described more fully below). All of these are Concepts, and they form a similar chain of specialization. A

 DDI - CDI: Integrating Data for Better Science

33

Unit is associated with a UnitType (so, any particular child from our example above be of the type

“student” – its UnitType). The set of Units of a given type can be qualified by many different

characteristics, among them temporal and geographical ones (“time and space”). The Universe

represents this qualified set, using all characteristics other than temporal and geographic ones. The

Population is a Universe with the additional qualifying characteristics of time and space added,

expressed as a selection of Units (the represented sample in cases where not every member of a

population is measured).

Note that the measures association is always “horizontal” between levels when the two inheritance

chains are considered (with the levels being ConceptualVariable-UnitType, RepresentedVariable-

Universe, and Instancevariable-Population).

Note also that multiple InstanceVariables can have “measures” associations with the same Population,

as they may reflect differences in sampling or encoding (they might have different SentinelValues.)

DDI - CDI does not describe the qualification of UnitTypes, Universes, or Populations in a very structured

way – it provides only for the definition of these Concepts and an indication of how they relate. Their

primary role is in understanding and navigating the variables associated with them.

Because all of the variables in the variable cascade, and the UnitType, Universe, and Population classes

are all specializations of Concept, they all share the “uses” association. This is intended for specific

purposes. Likewise, all of the variables lower in the variable cascade inherit the “measures” association

from the ConceptualVariable class, which is likewise intended for expressing a specific type of

relationship between the variables in the cascade and the Concepts used as associated UnitTypes,

Universes, and Populations.

The ”uses” association exists between any two Concepts in the model, but is intended to express very

specific relationships. These connect the specific set of instances within the two specialization chains:

ConceptualVariable-RepresentedVariable-Instancevariable and UnitType-Universe-Population. An

instance of a ConceptualVariable (Age in the example above) would be used by one of more

RepresentedVariables, and these in turn would be used by one or more InstanceVariables. These

relationships are captured with the “uses” association in the model, with instances in this chain “using”

the instance of the class which is closer to the Concept super-class. Thus, a RepresentedVariable which

expresses the ConceptualVariable Age as an integer would be associated with it via the “uses”

association. Likewise, an InstanceVariable which expresses Age as an integer would relate to that

RepresentedVariable with a “uses” association. (It is also possible for InstanceVariables to have “uses”

relationships with ConceptualVariables directly, to express the fact that they are all measuring the same

Concept.) This function of the “uses” association also exists within the ”UnitType-Universe-Population”

chain: each instance of these classes should be related to the instance of the class which is closer to

Concept in the specialization chain through the “uses” association.

This set of relationships demands that there be a corresponding set of relationships expressed with the

“measures” associations. In our example, the Age ConceptualVariable describes a characteristic of

students (the UnitType). It would express this relationship through a “measures” association with the

“student” instance of the UnitType class. Any RepresentedVariable which uses the Age

 DDI - CDI: Integrating Data for Better Science

34

ConceptualVariable will have a “measures” association to a Universe which itself has a “uses”

relationship with the “student” UnitType. Similarly, any instance of the InstanceVariable class which

“uses” an instance of RepresentedVariable should have a “measures” association to an instance of the

Population class which “uses” the instance of the Universe measured by that RepresentedVariable

instance.

This model has some implications for the description of UnitTypes, Universes, and Populations. These

classes are described more fully below.

6. Physical Datatypes

The Physical Datatype addresses the kind of data as written on a file, and therefore is often an
approximation of what is needed to describe values. (The actual use of the values depends more on the
Intended Datatype at the Represented Variable level.) The value $2.60 (two dollars and sixty cents) is
often written as a real number with 2 decimal places. But monetary amounts don’t follow all the rules
for real numbers. The amounts at the third decimal place or after are truncated. The values are not
rounded, as real numbers will be. This has an effect on computations, as the following example
illustrates:

Take the average of $1.50, $1.30, and $1.00. The arithmetic average is $1.2666. The rounded real
number average is $1.27, and the monetary, or scaled number, rounded average is $1.26. (The fractional
penny is dropped in the scaled situation.) The rules for scaled numbers correspond to how banks handle
money, for example.

E. Populations, Units, and Unit Types
One important feature of the variable cascade is the levels at which relationships exist to the

phenomenon being measured, as discussed above. A Datum is associated directly with a Unit, and an

InstanceVariable with a specific group of Units – a Population. At the level of the RepresentedVariable, a

Universe is associated with the data. A UnitType – the class of the Unit – is associated at the

ConceptualVariable.

The UnitType, Universe, and Population represent a “cascade” which shadows the variable cascade

itself: the Concept is applied to a particular type of unit to define a ConceptualVariable (the Age of a

Person). When the application of this concept is specialized (narrowed) for use as a representation (an

Integer between 0 and 20 in whole years for children, for example), this defines a Universe of those

types of Unit. When a particular set of Units from that Universe are selected, these form a Population

(the children in School District A).

Units are perhaps a less obvious feature of data when it is not focused on people (as in the examples

above). The same ideas are in operation regardless of the domain, however: we can consider the

situation where sensors are measuring salinity and other properties of sea-water. Salinity is a Concept;

Salinity of Sea-Water is a ConceptualVariable (Sea-Water is a UnitType). We can define a Universe such

as the Salinity of Sea Water in the Baltic (a specialization) and then select the locations of the sensors to

make up our Population (a set of locations of Sea Water in the Baltic being our Units).

 DDI - CDI: Integrating Data for Better Science

35

The way in which UnitTypes, Universes, and Populations are described is left very open in the DDI - CDI

model: the definitions are descriptive, rather than being fully structured. These descriptions should be

crafted with the relationships to variables in mind, as the breadth of UnitTypes and Universes will limit

how broadly they may be used, and this will have a direct impact on how they interact with the data

they help systems to organize.

F. Concepts, Codelists, and Classifications
The variable cascade shows the use of Concepts in several places, and it is important to understand how

these uses (and reuses) of Concepts work in the DDI - CDI model.

A Concept is simply the formal definition of an idea: a unit of thought differentiated by characteristics.

Typically, this is expressed as a formally defined term (minimally, the Name and Definition properties of

the Concept).

Concepts are very important in navigating and comparing different data, but they play several roles. If

we are to perform navigation and comparison in an automated fashion, it is important to understand

these different roles. The DDI - CDI model provides this.

In addition to being associated with the definition of a variable, Concepts also define Universes and

UnitTypes, as described above. Further, they are often used as Categories in the representation of

ValueDomains.

Consider a data set where there is a ConceptualVariable “Gender,” represented by one of a set of

Categories (“Male,” “Female,” etc.). This might be comparable – via some form of transformation – with

a data set which has a variable “IsMale” – based on the same Concept “Male” used as a Category in the

first data set – represented with a binary “Yes” or “No”. The fact that the same Concept “Male” is used

in these two roles may provide an indication that the two data sets may be comparable, or useful in

answering a research question. The DDI - CDI model provides for a formalization in which this situation

could be detected and acted on by a machine.

The use of Concepts as Categories is important, because there we see how they are associated with

specific Units within a Population. Even when representations of variables is different, it is possible for

the same Concepts to exist as ConceptualValues. This is the case in the marital status example shown

above: the same sets of Categories – that is, the same Concepts – may be represented using different

Codes. This level of detail is again significant when operating on the data to understand what is and is

not potentially comparable.

It is worth noting that the use of Categories ties a Concept to two important structures in the DDI - CDI

model: in describing data, they provide the meanings of Codes, which are often used as

ConceptualValues in the Datums described by variables. They also provide the definitions for

ClassificationItems – the nodes in Classifications. Categories may carry additional value in the context of

a Classification or Codelist in informing the meaning of the Code for human users as well as machines.

Concepts are also used in a number of other roles in the DDI - CDI model, but the mentioned uses are

significant in understanding how the variable cascade functions.

 DDI - CDI: Integrating Data for Better Science

36

VIII. Data Description

A. Introduction: Reading the Model
The DDI - CDI model is defined as a Unified Modeling Language (UML) model. Figure 7 below shows a

core portion of that model. The elements (classes) of the model appear as boxes with a name at the top

and a list of properties below the name. Properties, listed in the bottom half of the box for the class,

contain the payload of the class. Sometimes the value of a property is complex. The “definition”

property of a Concept, for example, has the datatype of “InternationalString”, which will have a text

string, but also other properties such as whether it is translated and from what language it is translated.

(This complexity is the result of many years of incorporation of use cases into the model.)

Classes may also have associations with other identifiable classes. In the diagram below a Datum has a

simple association named “denotes” with a ConceptualValue. This relationship is read as “a Datum

denotes a ConceptualValue”. This relationship is read as “a Datum denotes a ConceptualValue”. It is

displayed in the diagram as an arrow that indicates the order in which the association is to be read.

Classes that can be the target (object) of an association have a unique identifier and are reusable. The

target end is indicated by an open arrowhead.

Some classes inherit from others. This is indicated by the filled-in triangular arrowhead on the parent

end.

Some associations indicate containership. A ConceptSystem aggregates (has) a set of Concepts. This is

indicated by the diamond on the containing end of the relationship line and is read as “a ConceptSystem

has Concept”.

In the diagram below the content property of InstanceValue is a TypedString, which holds a physical

representation (and optionally a code describing its type taken from a user-defined controlled

vocabulary). There can be a chain of these complex datatypes as seen in the diagram where Concept

uses InternationalString which in turn uses LanguageString. Introduction of the ConceptualValue allows

for the description of multiple representations of the same measurement across multiple platforms. A

height, for example could be recorded as a decimal string or a binary string.

Physical structures (like files) are made up of DataPoints, each of which contains one InstanceValue.

The general idea in DDI - CDI is to be able to attach metadata at the “cellular” level, rather than at the

structural level, and to allow those “cells” to be arranged into different structures without loss of

descriptive information.

 DDI - CDI: Integrating Data for Better Science

37

Figure 7: Example Taken from the DDI – CDI Model

B. Scope
The DDI – CDI Data Description provides the basis for describing a broad range of data structures using a

core set of metadata elements. The model separates data structure and content in such a way as to

allow the same data to be structured flexibly, appearing in different forms without losing its meaning or

identity.

This section describes the general approach of DDI – CDI before going through the details for a selected

set of data structures. The goal for DDI – CDI is to describe various data structures, both legacy

structures such as rectangular data sets, multi-dimensional data, and event data, but also more recent

ones like data streams or data lakes. The approach is independent of any specific domain or discipline,

as similar data structures are used broadly in a range of research settings.

The model has structures for documenting different data structures and the transformations between

them.

Data structures are a way to organize data for processing by software programs. The current DDI - CDI

model describes data from different data structures using a Datum-based approach. This approach

 DDI - CDI: Integrating Data for Better Science

38

involves describing each “cell” in a granular fashion, such that the same values can be recognized when

occurring in data sets and streams which have different structures.

Each of the four data structure types – Wide, Long, Dimensional, and Key-Value – while slightly different,

share some common features (see section VI B above). Before going into how each of them can be

structured a set of related common components will be presented, applicable across the range of data

structures described.

It should be noted that relational structures can be described as a set of tables with keys indicating their

relationships, and so are not supported as a separate type.

C. Basic Concepts
Before explaining about the four data structure types some basic shared concepts require explanation.

1. Variables and Values
The variable cascade has been described above. In this section we discuss how values interact with this

model of variables. Central to this discussion are two aspects of the value: the domains from which it

draws its meaning and representation, and the way in which the values are associated with the higher-

level structures.

Domains provide representations and contexts for the data values. The SubstantiveConceptualDomain

specifies the set of valid concepts for the ConceptualVariable, while the SubstantiveValueDomain

specifies the set of values for the corresponding InstanceValues.

It is important to understand that substantive concepts and values are not the only ones which require

description. We also have a class of “sentinel” concepts and values which describe the status of a

variable, or reflect a meaningful aspect of the process.

Conceptual values comprise the meaning of the data – they are divided into “substantive” (that is, those

relevant to the scientific use of the data) and “sentinel” (those describing technical or process-related

aspects of the data). When describing variables, both of these are used, as appropriate. A variable which

measures altitude might have as values a measure of height above sea level (a substantive value), or it

might contain an indication that the altitude was unspecified (a sentinel value). These concepts would

be described by the SubstantiveConceptualDomain and SentinelConceptualDomain, respectively.

In the data itself, the InstanceValue might be a number (the measure) or a code (i.e., “unspecified”).

These would be described as valid values in the SubstantiveValueDomain and the SentinelValueDomain,

respectively.

To understand how these values are modelled in relation to the variable, we must look at DataPoints,

Datums, and InstanceValues.

A DataPoint is the space within which a value may reside. You can think of a data point as a cell in a

table: it may be populated with a value or not, but it still exists as a place in the structure where a value

can be held. Data points are not the values themselves – they are the place where the values are stored,

and in this sense are purely structural.

 DDI - CDI: Integrating Data for Better Science

39

As described above, an InstanceValue conveys the meaning of a ConceptualValue by representing it.

Thus, it is the InstanceValue which resides in the DataPoint, even though it is conveying the meaning

described by the associated ConceptualValue. In a table, we might see a “3” in the “Marital Status”

column, and we understand that “3” is a code representing the status “Unmarried”.

In the CDI model we have a class which represents the union of these ideas: the Datum. A Datum is a

granular bit of data which uses an instance value – a representation – to convey a conceptual value. It is

the union of these two, and so is the most granular meaningful object in the description of data.

An InstanceVariable describes the DataPoints which appear in a given data set (or similar collection). In

our notional table, the “Marital Status” column is an InstanceVariable: it provides the template for the

values in that column, each of which is a Datum (a ConceptualValue represented by an InstanceValue).

All of the Datums in the column will have values coming from the SubstantiveValueDomain or the

SentinelValueDomain associated with the Datum’s InstanceValue, and these will in turn represent

ConceptualValues coming from the SubstantiveConceptualDomain or SentinelConceptualDomain.

When navigating the model, it is important to remember that ConceptualValues are both substantive

and sentinel, and that ConceptualDomains are likewise both substantive and sentinel. (The conceptual

relationships are conveyed using the sub-classing feature of UML.)

In the diagram below, we can see that the InstanceVariable brings together the Datum and the

DataPoint, thus showing how the cells in our table are populated.

 DDI - CDI: Integrating Data for Better Science

40

Figure 8: Datum

The role of the Datum as the most granular meaningful construct in the model is significant: it allows the

single Datum to be be ‘followed’ across different data sets/streams with different structures.2 A Datum

populates a cell of a dataset, database table etc. The general idea in DDI - CDI is to be able to attach all

necessary metadata to the single Datum so that this information is not lost when it appears in different

places with different data structures.

This concept is summarized in the figure below: the Datum can be thought of as a central building block

in the DDI - CDI model, with its associated variable (it is connected through the InstanceVariable to the

reusable RepresentedVariable and ConceptualVariable, as per the variable cascade described above.)

2 This differs from approaches used in many other similar models, including other DDI products (e.g., DDI

Codebook, DDI Lifecycle) where some of this information was attached at a higher level (typically the

data set or record). DDI - CDI is a little more explicit than GSIM in describing the conceptual value and its

representation, the instance value. As an information model, GSIM does not deal with the details of

physical representation of data. DDI - CDI needs to be able to describe representation in more detail.

 DDI - CDI: Integrating Data for Better Science

41

2. Keys
Another central concept for Data Description is that of the Key. In the model a Key is used for the

identification of data and may comprise a set of Key members or be a unitary value. Figure 11 below

shows how an InstanceValue is linked to a Unit (an individual or object of interest) via a Key that

identifies the DataPoint where the InstanceValue is stored.

A Key is defined as a collection of data instances that uniquely identify one or more data points in a

given data structure. A KeyMember is a single data instance that is a part of an aggregate key. (Note that

the members of a Key are themselves specialized InstanceValues stored in DataPoints.)

This circle represents a datum, “73,7” is its representation.

 DDI - CDI: Integrating Data for Better Science

42

Figure 9: Core Data Structures and Related Classes

3. Data Structure Components
A third important feature of the model are DataStructureComponents, allowing the

RepresentedVariables to take different roles. Each data structure type - Wide, Long, Multi-Dimensional

and Key-Value - has its own set of DataStructureComponents, with some being common across data

structure types. The components which reflect roles are the IdentifierComponent, AttributeComponent

and MeasureComponent. The roles allow a RepresentedVariable to serve as a Measure in one context

and as an Identifier in a different context, for example (where the “context” is a particular data

set/stream with its own structure). This will be detailed below in the description of the different data

structure types.

Roles allow users to assign different structural functions to variables according to their context of use.

Roles are not inherent in variables but are imposed on them, as appropriate. In DDI - CDI there are

currently three “common” roles used across all data structures, and several additional ones which are

used only in some of the possible data structure descriptions:

 DDI - CDI: Integrating Data for Better Science

43

Common Components:

• Identifier - An identifier role that serves to identify a unit. More than one variable may

be used in combination to produce a compound identifier for the unit of a particular

observation.

• Measure – Variables tagged with the measure role represent the values of interest.

• Attribute – The attribute role serves to provide information about the measures of

interest. Variables might, for example, describe the conditions of a measurement. This

way attributes can be used to link metadata or paradata to the Measure of interest.

Additional Comnponents:

• Dimension – Acts as a field in a compound identifier for disambiguating the cells in a

multidimensional table or “cube”. Specific to multi-dimensional data structures.

• Primary Key – Acts like a primary key attribute in a relational model. Used in

conjunction with a ForeignKeyComponent in another table structure to indicate a

relationship between the two structures.

• Foreign Key - Acts like a foreign key attribute in a relational model (e.g., a column). Used

in conjunction with a PrimaryKeyComponent in another table structure to indicate a

relationship between the two structures.

• Variable Descriptor – Acts in a record to identify the variable to which the value in the

accompanying VariableMeasure component applies. Specific to Long data structures.

• Variable Measure – Holds values for the variable in a record which is specified by the

VariableDescriptorComponent. Specific to Long data structures.

• Synthetic ID – Used to hold a PID in some types of data structures, to complement or

supplant ordinary identifying components. Populated with a GUID, UUID, or other,

similar identifier. (SyntheticIdComponents are not intended as the primary form of

identification structures for data in DDI - CDI, but are sometimes needed/useful.)

• Contextual – Used to indicate the scope within which a Key is unique within a Key-Value

Data Store. Specific to Key-Value data structures.

A variable may take on different roles in different contexts.

Data structure components have two attributes which can serve important functions in some cases:

semantic and specializationRole. These are described below:

Semantic – this attribute provides a value from a controlled vocabulary to further inform the role

indicated by the data structure component type. This could be taken from an external controlled

 DDI - CDI: Integrating Data for Better Science

44

vocabulary (such as an ontology) in cases where the function of the role needs further descriptive

semantics attached to it.

SpecializationRole – This attribute is required for the automation of some types of data integration and

harmonization, by indicting additional functions performed by the data structure component. These

provide further information about time, geography, or other aspects of the component which are

needed in processing to identify how data sets might be joined. (For example, in a data set which has

multiple variables holding time values, the TimeRole attribute might hold a value of “ReferencePeriod”

to indicate that it is useful for temporal integration.)

D. Wide Format (Unit Record Data Structure)

1. Example

A Unit Record data table, as shown in Figure 12, is a common way to organize data. Each record has a

set of observations about a single unit. The record has a unit identifier (a variable being used as an

IdentifierComponent which holds an identifier for the Unit) and a set of measures and/or descriptors

which are the same for each unit. The unit identifier can be used as an identifier for the record, because

each unit has only one. This structure is also referred to as a rectangular data file.

The objects of the Wide format Unit Record data table are unit data records, variables and

InstanceValues. In the Wide format the rows correspond to each unit record, which is a set of

InstanceValues for one entity (Unit). The columns correspond to each variable measure or

categorization. Cell entries are InstanceValues.

A cell in the Unit record table is an intersection between a column representing a variable and a row

representing a measurement unit. See for example ‘8.1.1929’ in Figure 13 (yellow highlighting).

Each cell of the table contains an InstanceValue. ‘Marie’ and ‘Henry’ (green highlighting) are identifiers

for each of the records. ‘Sex’, ‘Longevity’ etc. are variables (blue) and ‘Female’ and ’78.8’ are example of

InstanceValues (red).

 DDI - CDI: Integrating Data for Better Science

45

The WideDataSet contains DataPoints, all the ‘cells’ in the table. Columns contain the set of values from

individual variables, and each row contain the DataPoints for one Unit. Some of the DataPoints contain

values keys that identify the DataPoints common to an individual row of the table. A WideKey can have

more than one Member - e.g. more DataPoints which act as identifiers. This will be further explained

below.

2. Discussion of Structure and Diagrams – Wide
A Wide table row is further structured by three DataStructureComponents types:

○ IdentifierComponents - the DataPoints which serve to identify the row.

○ MeasurementComponents - the DataPoints in each row which contain the measures of

interest.

○ AttributeComponents - DataPoints which provide context for the MeasureComponents.

RepresentedVariables provide SubstantiveValues for a WideKeyMember.

In the example dataset displayed in Figure 14 below the “PersonID” column contains DataPoints that

contain the key values that identify a row and also correspond to a Unit.

The DataPoint in the upper left of the table contains the key value “Marie”. That DataPoint identifies the

other DataPoints also associated with the person named “Marie”, the DataPoints in the first row of the

table.

A WideKey can be composed of more than one WideKeyMember. Our table might, for instance, have

contained another column like “Family” so that we could identify the Marie in a particular family. (This

might be important in a data set which had more than one unit named “Marie”, requiring a further

value to disambiguate.)

These are defined by RepresentedVariables, which in turn provide the SubstantiveValueDomain (often a

Codelist) for a WideKeyMember.

 DDI - CDI: Integrating Data for Better Science

46

In the figure above, PersonID is an identifier for a person, Sex, Born, Died, and Longevity and RefArea

are the measures of interest.

These roles are not fixed, but are dependent on how the role functions in the context of the structure.

For another purpose, RefArea might be considered an attribute of the measures. Roles are often slightly

different when the same data is viewed using different formats (PersonID is the only identifier needed

for the Unit Record format above – when expressed in a Long format, it would be only one needed

component of a compound identifier – more than one variable would take on the role of identifier. (See

the microdata.no example, below).

Note that at least one variable functioning as an IdentifierComponent must be specified. (It would also

be unusual not to have at least one MeasureComponent in a data structure.)

The diagram in Figure 15 below shows the DDI - CDI classes used to represent unit data in wide format.

This is probably the most common layout for data – the traditional table of data as used in many

statistical packages and spreadsheet programs. Columns are variables and each row contain the

DataPoints for one Unit.

 DDI - CDI: Integrating Data for Better Science

47

Figure 10: Wide Structure

E. Long Data Format

1. Example
The same data as in the Wide example can be expressed in a different format called Long as shown in

Figure 16 below. This format is often used to express event data which is collected as an on-going

“stream” over time.

In the Long format columns correspond to each kind of object in a Wide (unit record) description. Each

row now contains (at a minimum) a unit identifier, a variable identifier, and a data point with an

Instance Value.

The rows correspond to each value of each (non-identifying) variable for each Wide record. Note that

for this example, a process value has been added, indicating whether the value has been subjected to a

verification check – this is just for purposes of illustration, to show how an attribute component

functions in the Long structure.

 DDI - CDI: Integrating Data for Better Science

48

In pure form, each row of a Long structure contains a DataPoint with the value of interest (the

InstanceValue) along with identifiers for a unit and a column with a code that identifies the variable

(VariableRef above) that associates with the value in the value DataPoint. In the figure above the Value

column contains DataPoints with values from more than one variable (Sex, Born, Died, RefArea, and

Longevity). Note that there may be many rows for a unit (like for “Marie”). There can also be columns

containing attribute values. The “Verified” column is an attribute that indicates whether the value in the

Value column has been verified.

Here we can see how a complete record for one unit from our Wide example might be represented:

each column in the Wide format for a single row becomes a row in the Long format (see

Transformations between Data Structures, Examples, below).

 DDI - CDI: Integrating Data for Better Science

49

2. Discussion of Structure and Diagrams – Long
The high-level view of the LongDataStructure model is shown below. Each DataPoint in the dataset is
based on one of five data structure components. Each component is associated with a
RepresentedVariable that can define a column in the long table.

These perform the following functions:

• IdentifierComponent – one of possibly several components that together identify the Unit associated
with the measures and attributes. In the example above this is the CaseID column in Figure 16.

• MeasureComponent – a measure just like in the wide layout. This allows a hybrid wide-long layout.
There is no such column in the example above - if there were the values for the Marie rows in Figure 16
would all be the same.

• AttributeComponent – an attribute that annotates the associated measure values. This is the Verified
column in Figure 16.

• VariableDescriptorComponent – an indicator of the InstanceVariable in each associated
VariableValueComponent DataPoint (see Diagram). This is the VariableRef column above. In the first row
the code “Sex” indicates that the value “Female” is associated with the variable named “Sex” used in the
Wide table. Note that this component has an association to a specific VariableValueComponent.

• VariableValueComponent – defines a column that has a value associated with the value in the
VariableDescriptorComponent. This is the Value column above. The “3.3.1932” is interpreted as the date
that Marie was born. This column will have to have a datatype as generic as needed to hold all of the
values from the set of variables indicated in the VariableDescriptorComponent. In the example above
there is a mix of numeric (Longevity), Date (Born, Died), character (Sex), and geographic codes (RefArea)
variables. A character datatype for the associated RepresentedVariable would be required. In many
statistical platforms there are tools to reshape data between wide and long format. Many have
restrictions that would force all of the measure values to have the same datatype (e.g. all numeric).

 DDI - CDI: Integrating Data for Better Science

50

Figure 11: Long Structure – Overall Diagram

Figure 11 shows the different data structure components described above.

The diagram in Figure 11 conceals some of the complexity involving the association between the

LongKey on the one hand, and the LongMainKeyMember and the Descriptor classes on the other. The

LongKey is actually a composite of LongMainKeyMembers and Descriptors, each of which is based on

one of the five component types. A LongKey could include, for example, two IdentifierComponents, such

as variables “Household” and “personInHousehold”, assuming that both of these are present in a single

record having two IdentifierComponents.

The Long layout brings out the utility of the Datum based approach and the use of keys to describe data.

In the Long dataset example the values of the “Value” column are in a different conceptual domain in

each row. A traditional (“wide”) variable having one conceptual and one value domain makes no sense

for the column, as it fails to provide a sufficiently complete description of the values for many purposes.

If we again consider the table, the VariableRef column contains the VariableDescriptorComponent of the

compound key describing the InstanceValue in each row of the value column. The column VariableRef

itself is a DescriptorVariable (see Figure 12) that can be described as having codes that point to

InstanceVariables. In the highlighted cell in that column “Born” is a code for an InstanceVariable that

describes dates of birth. The other two columns are associated with InstanceVariables that could appear

in a wide layout. CaseID contains id values each of which is an IdentifierComponent of the compound

 DDI - CDI: Integrating Data for Better Science

51

key. Verified contains the AttributeComponent of the key. Together the compound key of “Marie”,

“Born”, and “TRUE” provides context for the highlighted InstanceValue of “3.3.1992”. They allow it to

associate it with the “3.3.1992” in the “Marie” row of the “Born” column of the wide example table

above.

The VariableDescriptorComponent diagram below shows how the VariableDescriptorComponent relates

to other components of the model.

Figure 12: Descriptor Diagram

Each record in a LongStructure must have one component providing the value of the measure (the

VariableValueComponent) and one which assigns that value to a variable (the

VariableDescriptorComponent). You may not have multiple variables containing measures in a single

record in a Long record, as the record itself implies the connection between these two when data is

structured in this way.

It is very common for one or more AttributeComponents to contain time values (such as those which

specify a point in time when the value was obtained, or for the start and end points of an event

occurring over a period of time). The time values will frequently contribute to the identification of the

measured or observed value, and must be included in the Key.

 DDI - CDI: Integrating Data for Better Science

52

F. Multi-Dimensional Format

1. Example
Sometimes data are presented in dimensional form. In the example below (Figure 21) there are three

dimensions: geographic, with Categories of Newport, Cardiff, Monmouthshire, and Merthyr Tydfil.;

temporal, with categories like 2004-2006; and gender, with categories of Male and Female. The numeric

values in the cells are often aggregates computed on some variable or combination of variables, in this

case the mean of longevity. Cells might also contain direct measurements such as with data from an

experiment with a factorial design. Dimensional data are commonly displayed in a dimensional table like

a pivot table.

2. Discussion of Structure and Diagrams – Dimensional
A cube is a multi-dimensional array of cells (DataPoints). Values in the cells may be the result of an

aggregate computation or a direct measurement.

At a logical level the structure of the cube is defined by a set of Dimensions (the

DimensionalDataStructure in the diagram below).

 DDI - CDI: Integrating Data for Better Science

53

Figure 13: Dimensional Data Structure

Each dimension (DimensionComponent) is, in turn structured by a SubstantiveValueDomain and
defined by a RepresentedVariable. The latter also brings along the specification of a Universe and a
Concept. A Dimension can be categorical, for example (“Male”, “Female”). In this case the
SubstantiveValueDomain would consist of a Codelist. Typically cubes containing aggregate
data would have primarily (or only) categorical dimensions. A DimensionComponent might also have a
described value domain. Experimental data might, for instance, employ an independent variable
measured as a real number (e.g. person’s weight).

While there may be some underlying continuous variable for a Dimension, a Dimension may often be
delineated by discrete dimensional categories. Time, for example, is a continuous measure. In our cube
example, though, it has been transformed into a set of three-year categories like 2004-2006. This, along
with the other two dimensions (gender, and geography), allows for the delineation of discrete cells in a
table. Note that the time periods in this example (Figure 22) overlap.

The DimensionalComponents form the basis for keys. A DimensionalKey is a composite of one value
from each SubstantiveValueDomain of a DimensionComponent. This composite DimensionalKey
identifies the location of a DataPoint in the dimensional structure. Our example cube, for example,
contains mean longevity data measured on people of Wales. The DataPoint (cell) identified by the key
value (2006 – 2008, Female, Newport) is associated with that subset of people.

Partial Keys – in which only a subset of the DimensionalKeyMembers have values specified for them –
can be used to refer to regions (or “slices”) within the cube. (DDI - CDI does not explicitly model this; it is
left to implementations to handle partial Keys if this is useful or required.)

 DDI - CDI: Integrating Data for Better Science

54

Each DimensionalKeyMember (InstanceValue) of the DimensionalKey is also associated with the concept
‘Male’ in a ConceptualValueDomain. This would provide meaning for the DimensionalKeyMember in the
case of an aggregate data set.

Categories within the Dimension may be additive or not. In our example the geographic areas could be
combined to create larger areas. The year range categories could not be combined in a straightforward
fashion given that they overlap.

In addition to structure a cube has content. The CubeDataStructure also includes a MeasureComponent

and an AttributeComponent. The MeasureComponent is defined by a variable for that value.

A QualifiedMeasure as the measure for the whole cube (e.g. mean of longevity), while a ScopedMeasure

is for each cell in a cube as its Population narrows the Universe of the Qualified measure

There might also be Attributes associated with each cell in a cube. One example of an attribute might

indicate whether the measure for the cell was imputed.

The DDI - CDI model bundles a number of information elements into an Instance Variable. While a cube

like our example may have a measure with a single concept, each cell in the cube has a different

Population. The upper left cell in the example has a mean of longevity for Males in Newport in 2004-

2006. The cell just to the right of it has mean of longevity for Females in Newport in 2004-2006. The DDI

- CDI Dimensional model includes the notion of a ScopedMeasure for the InstanceVarriable for each cell

in a cube and a QualifiedMeasure as the measure for the whole cube. The ScopedMeasure has a

Population which narrows the Universe for the QualifiedMeasure.

The table below shows a long representation of a cube with three DimensionalComponents, one
MeasureComponent, and two AttributeComponents. The attributes in this case indicate revised data in
the cells of the cube, identified by vintage, and with an indication of what revision process took place.

 DDI - CDI: Integrating Data for Better Science

55

In the diagram below, we can see that multiple Datums can exist for those cases where there are
revisions: these would share a Key but would be distinguished by the vintage property associated with
each RevisableDatum.

While such revisions can be handled in other ways using this model (a time stamp associated with the
observation – observation period - functioning as a dimension, for example) many systems use the
approach modeled here, and do not manage revisions as part of the dimensionality of their data. The
requirement is that two values with identical Keys be distinguishable – this model includes
RevisableDatum to support those systems which require it.

G. Key-Value Format

1. Example
A Key-Value store represents a repository holding data as a set of pairs, a key – the InstanceKey - and its

associated value, a DataPoint. The DDI - CDI model is shown in Figure 15. A key is a unique value that

allows look-up of its linked value. The DDI - CDI model includes a KeyValueDataStore which contains the

key-value pairs.

There are many possible ways to compose keys. The KeyValueDataStore may be divided into contexts,

within which all of the subordinate keys are unique. The subject of the data – either a Unit or Population

– can be contained as a component of the key. When this is a population, this portion of the key may

itself be composed of the dimensional identifiers of the population, as for multi-dimensional data. Time

may serve as a component of the key. Reference values may be used, as may variables. If needed, a

“synthetic” component may be used, which holds no meaning but is unique within the context of the

key.

In the example below the data are stored as key-value pairs. The Key column contains InstanceKey

values that identify the associated DataPoints. Looking at the data in Figure 27, the value “3.3.1992”

could be associated with a key “Marie-Born” combining the unit identifier (“Marie”) and the variable

 DDI - CDI: Integrating Data for Better Science

56

name (“Born”). The date 3.3.1932, for example is described by the InstanceKey “Marie-Born”. The cell

containing 3.3.1932 is the DataPoint identified by the Key. This table, if combined with other data with

keys composed in different ways, add a context – a Contextual component – to the key to distinguish

between the different ways in which data are being composed within the repository.

The KeyValue structure can be used for data in data lakes, No SQL systems, and other forms of big data.

2. Discussion of Structure and Diagrams – Key-Value
At its heart the Key-Value model is simple. A key identifies a value, and a set of these are held in a
KeyValueDataStore. The key is represented in DDI - CDI as an InstanceKey, the value as a DataPoint. The
structure of the KeyValueDataStore is known from the KeyValueStructure with which it is associated.

It is possible to have more than one scheme for the composition of keys, by including in each a
component which represents that scheme – or “context” – within which the key is unique.

The diagram below gives an overview of the relevant classes in DDI - CDI:

 DDI - CDI: Integrating Data for Better Science

57

Figure 14: Key Value Overall Diagram

InstanceKeys may be composed of a variety of different members: MainKeyMember, TimeKeyMember,

and Descriptor are all used. These members are in turn composed of different StructureComponents

according to rules which guarantee their uniqueness.

The members which are used to compose an InstanceKey are shown in the diagram below:

 DDI - CDI: Integrating Data for Better Science

58

Figure 15: Key Value Instance Key

The MainKeyMember is the most complex one. In the simplest case, it may be composed of a

SyntheticIdComponent, which might be a GUID or similar identifier which is guaranteed to be unique,

but serves no other purpose. (The SyntheticComponent could be a primary key in a lookup table having

other key components along with the SyntheticComponent.) IdentifierComponents may be used to

provide unitary values which identify the Units of the value (that is, their subject). Similarly, Units and

Populations may be identified using DimensionComponents, providing a compound key structure like

that found for multi-dimensional data. If more than one approach to composing keys is used, each may

be established as a “context”, and this can be added to the keys using the ContextualComponent.

TimeKeyMembers are made up of TimeComponents, which may be anything with a temporal

association (this can be an enumerated value such as “Valid”, a timestamp, or any other time-related

value.)

Descriptors use the VariableDescriptorComponent, which brings together AttributeComponents and

MeasureComponents (as for the Long Data structure). Descriptors are associated with a ReferenceValue

– that is, the value held as an instance of the component being used to compose the key. (In our

 DDI - CDI: Integrating Data for Better Science

59

example, the variable “Born” could be a column in a Wide table, or a value in a Long table in the

VariableDescriptor column. For Key-Value data, it is used as a Member in composing the Key.)

A Key has a structure consisting of all of these components.

H. Physical Data Set (Wide Format)
The PhysicalDataSet diagram below shows the relationship of the PhysicalDataSet to other classes. A

PhysicalDataset is a set of record segments (PhysicalRecordSegments). In older data files it was common

to have a record (a row of a table) that was represented as a sequence of shorter records (e.g. strings)

due to constraints imposed by the physical media. A record, for example, of 150 characters required two

80 column cards. A property of the PhysicalDataSet signifies the number of segments per record.

The order of the PhysicalRecordSegments is specified by a set of PhysicalRecordSegmentPositions, each

of which having an integer describing the position of the segment in the dataset.

Figure 16: Physical Data Set - Overall Diagram

The PhysicalRecordSegment is composed of DataPoints. A DataPoint contains an InstanceValue. In a text

file the InstanceValue would be a substring of the string comprising the PhysicalRecordSegment. In a

binary file it would be a sequence of bits within a larger sequence of bits. A DataPoint is described

conceptually by an InstanceVariable. It is identified and set into context by a Key. The example below,

for a traditional rectangular table, uses a WideKey.

The DataPoint is also described by a ValueMapping. For a string representation this contains

information like the separator used for the decimal part of a number (defaultDecimalSeparator), or the

maximum length of the string (maximumLength), etc.

 DDI - CDI: Integrating Data for Better Science

60

Figure 17: Physical Record Segment Diagram

 In a text file the InstanceValue in a DataPoint is a substring of the PhysicalRecordSegment string itself.

In a delimited file like a CSV file, the separation of those sequential substrings is indicated by delimiters.

The PhysicalSegmentLayout contains information about those delimiters, the encoding of the record

segment, whether text values are enclosed in quotes, etc.

 For a fixed width file the ValueMapping can point to a SegmentByText object that contains information

like the starting position (startCharacterPosition) and ending position (endCharacterPosition) of the

substring within the segment. There is a parent class, PhysicalSegmentLocation, that will allow for

description of data location in other types of media than text files. In a binary file this might be starting

byte number and ending byte number. A video clip within a larger video file might be described by a

start time and end time or by start and end frame number.

I. Relational Structures using Primary and Foreign Key
It is possible to describe a relational structure using the data structure descriptions in DDI - CDI, as a set

of tables (that is, data structures) related through the use of foreign keys. Typically, such tables are in

Wide or Long form. Figure 18 shows the relevant classes:

 DDI - CDI: Integrating Data for Better Science

61

Figure 18: Relational Keys

DDI - CDI includes a construct to capture the notions of keys and foreign keys from the classical

relational model. This construct provides the functionality of linking datasets via their associated data

structures. The construct consists of a DataStructureKey class which is specialized into two sub-classes:

PrimaryKey and ForeignKey. A DataStructureKey is composed of DataStructureComponents.

A DataStructure may have multiple DataStructureKeys, but only one of them can be a PrimaryKey while

the others can be ForeignKeys. (No other type of relational keys is considered in this version.)

DDI - CDI also has the notion of Keys, as explained in VIII.C.2 Keys. Note that there is a constraint that

needs to be satisfied: Keys in a DataSet should be consistent with the PrimaryKey. Essentially, that

means that KeyMembers must be based only on DataStructureComponents that constitute a

PrimaryKey of an associated DataStructure. This is in line with the relational model.

Once a DataStructure has a PrimaryKey it can be linked to from another DataStructure. This is done by

means of a ForeignKey, which references an external PrimaryKey, i.e. a PrimaryKey of another

DataStructure. This is also in line with the relational model, and provides a simple and yet powerful

mechanism of linking data across DataSets.

 DDI - CDI: Integrating Data for Better Science

62

J. Transformations between Formats/Examples

1. Wide and long: Correspondence between unit record data and data in a long format
The example below shows the mapping between the Wide Unit record format and the Long format. We

see that all combinations of variables and values for each unit record identifier are retained. Each value

in the record for Marie now has its own row, with a second value – the VariableRef – telling us what the

value is (the column in the Wide table). The cell value is the InstanceValue.

The VariableDescriptorComponent allows for the tracking of Datums between traditional wide layouts

like the unit record format and Long layouts as shown in the Figure 34 example. All of the popular data

analysis platforms have procedures like the R and Stata “reshape” function, or SAS PROC Transpose, that

transform data tables back and forth between the two layouts. DDI - CDI provides a way to record this

metadata which is not typically supported by non-proprietary formats.

Some types of data, like event data, typically employ Long layouts for the flexibility of adding measures

and for the ability to represent sparse structures economically. Columns like “Value” in the Long layout

example cannot be described as a traditional variable with a single value domain. They are instead a set

of DataPoints having different conceptual domains and representations. For each DataPoint an

associated Datum may populate DataPoints in other structures.

The ValueMapping attached to the DataPoint allows for description of the physical representation of the

generic representations in the Value column. That column as a whole must have a common

representation, like a text string or bit string, that is capable of representing all of the value types for the

set of underlying InstanceVariable. (Note that some platforms, like Python Pandas, may allow multiple

datatypes in a column.)

 DDI - CDI: Integrating Data for Better Science

63

2. Wide and Dimensional: Unit Record Data Tabulated into an Aggregate Data Cube
Unit record data can be tabulated into cubes (aggregate/dimensional data). Data from the individual

units contribute to the aggregates of a cube. We see that ‘Mary’, ‘Henry’ and the others contribute to

the aggregate statistics of the cube. The appropriate Unit record datum is averaged, producing the

datum for the cube cell. In the cube below Marie contributes to two different cells due to overlapping

time periods, while Henry only contributes to one cell.

When computing a cube from the unit record data the value domains of some of the variables listed as

measures above will correspond to dimensions of the cube. The categories of Sex, for example define

the Sex dimension in the cube example. A computation on Died above would produce the time

categories for the cube. The combination of dimension values for each unit (person here) would

determine which set of units would contribute to the computation of the measure (Longevity here).

 DDI - CDI: Integrating Data for Better Science

64

The SQL query that follows computes the cube data from the unit data:

 create table WalesCube as

 select Sex,RefArea,

 case

 when died >= '1jan2004'd and died <= '31Dec2006'd then "2004-2006"

 when died >= '1jan2005'd and died <= '31Dec2007'd then "2005-2007"

 when died >= '1jan2006'd and died <= '31Dec2008'd then "2006-2008"

 else " "

 end as TimePeriod,

 mean(Longevity) as Longevity

 from WalesUnitData

 group by sex, TimePeriod, RefArea

 ;

The processing code used to perform aggregations can be expressed in many different forms, both

standard and proprietary. The Process model of DDI – CDI is designed to work with these to connect the

metadata describing the data (both pre- and post-transformation) with the relevant processing code.

3. Long and Dimensional: Dimensional Data Represented in a Long Data Format
As noted before dimensional data can be represented in a Long layout. In this case the measure

corresponds to the QualifiedMeasure in the model. Its population is the whole set of observations in the

cube. There could be an extra column to represent the vintage instance for the associated measure. The

DDI - CDI model includes classes that can assign roles to variables. In this example the first three

variables take on the role as an IdentifierComponent. The values (codes), like “Newport”, or “2005-

2007”in those columns are the representations of IdentifierComponent in the model. The longevity

variable has a MeasureComponent, and the revision variable is an AttributeComponent. The values

(codes) like “Newport”, or “2005-2007” in those columns are the representations of the

IdentifierComponents in the model.

 DDI - CDI: Integrating Data for Better Science

65

 IdentifierComponent QualifiedMeasure

Geography Gender Time Longevity Vintage

NewPort Male 2004-2006 76.7 Aug-09

NewPort Female 2004-2006 80.7 Aug-09

NewPort Male 2005-2007 77.1 Aug-09

NewPort Female 2005-2007 80.9 Aug-09

NewPort Male 2006-2008 77 Aug-09

NewPort Female 2006-2008 81.5 Aug-09

Cardiff Male 2004-2006 78.7 Aug-09

Cardiff Female 2004-2006 83.3 Aug-09

… … … … ..

Merthyr Male 2006-2008 Jul-09

Merthyr Female 2006-2008 Jul-09

4. Key-Value and Wide: Key-Value Stores in microdata.no
The example below shows what a possible dataset based on the RAIRD information model might look

like. (The RAIRD Information Model was developed for microdata.no, a project involving the compilation

of data from a set of administrative registers in Norway into a resource which can be used securely

through an online analysis package by researchers. The central compiled data store is similar to the

example given here, but researchers perform analysis on Wide data sets derived from it. The data is a

form of “event history” data, giving information about specific events and periods for the Units it

describes.)

Microdata.no uses a hybrid form of Long and Wide layouts in that they add StartDate and EndDate as

attributes that identify a value. In Figure 37 we recognize the crosswalk from the Wide Unit record data

format to Long. StartDate and EndDate variables for each value are added additionally.

The KeyValue table expresses the collection of variables in a possible microdata.no data set and how

they are ordered. Key values link roles to each of them.

https://statswiki.unece.org/display/gsim/RAIRD+Information+Model+RIM+v1_0

 DDI - CDI: Integrating Data for Better Science

66

Here, we see that both CaseID and VariableRef function as identifiers – taken together, they uniquely

identify a record in the Long format, and indeed as the identifier for a specific measure (the Value).

5. Time series
With time as an attribute dimension in a full cube, a time series can be seen as a slice of the cube,

holding the structural identifier values constant. In the example below geography and Gender are held

constant and time varies across its possible values. The vintage column is added to indicate which

revision of the data is being reported.

 CellDefinition QualifiedMeasure
geography Gender Time longevity vintage

NewPort Male
2004-
2006 76.7 Aug-09

NewPort Male
2005-
2007 77.1 Aug-09

NewPort Male
2006-
2008 77 Aug-09

6. Key-Value Stores and Streams
Streaming data may involve a flexible set of measures arriving at unpredictable times. Structures that

may be useful for streaming data include the long structure (like for event data) or a key value store.

With a long structure, measure variables may be associated with identifier variables (such as a sensor

identifier) and attribute variables (such as time of measurement, time of receipt, and location of

measurement).

 DDI - CDI: Integrating Data for Better Science

67

Measures may involve datatypes not currently described in DDI - CDI (images, sound recording, etc.) but

envisioned as potential candidates for inclusion in future.

An example sensor observation from the W3C Semantic Sensor Network Ontology (SSN)

(https://www.w3.org/TR/vocab-ssn/#iphone_barometer-sosa) is of a barometric pressure taken by an

iPhone. The SSN RDF for the Observation is:

<Observation/346344> rdf:type sosa:Observation ;

 sosa:observedProperty <sensor/35-207306-844818-

0/BMP282/atmosphericPressure> ;

 sosa:hasFeatureOfInterest <earthAtmosphere> ;

 sosa:madeBySensor <sensor/35-207306-844818-0/BMP282> ;

 sosa:hasSimpleResult "1021.45 hPa"^^cdt:ucum ;

 sosa:resultTime "2017-06-06T12:36:12Z"^^xsd:dateTime .

A long representation for the data might look like this, where the value atmosphericPressurehPa is a

code that points to a variable that links to the Concept “earthAtmosphere” in units of hectoPascal

(hPa).

SensorID Property Time ResultingValue

sensor/35-207306-844818-0/BMP282 atmosphericPressurehPa

2017-06-
06T12:36:12Z 1021.45

A Key-Value representation might look like this. The SensorID and Property are concatenated into a

single Key. The Key could be decomposed into the SensorID and Property components as needed.

Key Time ResultingValue

sensor/35-207306-844818-0/BMP282/atmosphericPressure

2017-06-
06T12:36:12Z 1021.45

IX. The Process Model

A. Introduction
The DDI - CDI Process model is a generic process model able to describe retrospectively a succession of

activities. These activities may be a set of business processes described at a conceptual level and/or a

set of concrete steps (and their sub-steps, ad infinitum) that take different information objects as

parameters. This basic model can be applied at any level: a top-level Activity is a business function which

covers the full scope of the process. The sub-Activities and Steps are specific subordinate parts of the

process. This could be used to describe the entire production of a database, or something as specific as

the succession of questions in a questionnaire. Parameters may include, data, structured metadata, and

computer programs, or any other input which can be identified.

Although primarily intended for retrospective use, the model can also be used to describe intended

process flows: prospective process. Additionally, it can be the basis for computational replication. The

https://www.w3.org/TR/vocab-ssn/#iphone_barometer-sosa

 DDI - CDI: Integrating Data for Better Science

68

model itself does not indicate its application in any given system: this should be made clear by

implementers.

Several forms of “succession” can be described. They fall into two categories – deterministic and non-

deterministic. Deterministic succession may be parallel or sequential. Non-deterministic succession may

be temporally ordered using Allen’s interval algebra. Alternatively, non-deterministic succession may be

governed by inference engines that form the basis for rule-based systems.

Generally speaking, each type of succession is supported by a set of control constructs. Together the

control constructs form a plan or program that orchestrates a workflow. Depending on the control

constructs, there are a myriad of workflow patterns. It is possible within a single process to combine

both forms of succession, using the ControlLogic to pass between them.

B. Process Model Conceptual Model Overview

Figure 19: DDI - CDI Process Model Overview

In the DDI - CDI Process model processes are performed by ProcessingAgents, which can be machines or

other types of actors. ProcessingAgents perform business functions – Activities – in accordance with the

ControlLogic associated with that Activity. Activities have inputs and outputs, which are attributes

https://en.wikipedia.org/wiki/Allen%27s_interval_algebra

 DDI - CDI: Integrating Data for Better Science

69

termed “entityUsed” and “entityProduced”, which correspond to the resources consumed and produced

at the business level described by the Activity, using references to whatever resources are meaningful in

the context of the implementation. The details of the specific inputs and outputs needed – the

information objects used as Parameters (see Section IX. B. 1.) – are associated to the Activity’s

ControlLogic through InformationFlowDefinition objects, which connect the outputs of one Activity to

the inputs of another. This allows for the description of specific workflows within and between

Activities, either at a very general level (using entityUsed and entityProduced) or at a more detailed

level, as Parameters, in reference to resources described according to the DDI-CDI model.

To give an example, consider the workflow illustrated below:

Here, we have a business process which takes several data sets giving monthly measurements over the

course of a specific year, and produces quarterly and annual times series from them, which are then

disseminated. The “Produce Time Series” Activity will take the monthly observations and produce new

data sets at quarterly and annual frequencies (“time series”) across several years. These new data sets

would then be passed to another Activity which would disseminate them.

If our monthly data sets are proprietary files from a statistical package, and our quarterly and annual

time series are to be produced in a standard Statistical Data and Metadata Exchange (SDMX) format, I

could describe this workflow at the business level using entityUsed and entityProduced attributes on my

Produce Time Series Activity, using file names or URLs for the monthly inputs, and SDMX identifiers for

my quarterly and annual outputs. The subsequent Disseminate Time Series Activity would then point to

the SDMX files which it uses as inputs, again using the SDMX identifiers.

 DDI - CDI: Integrating Data for Better Science

70

If a description of the sequence of the two Activities was needed, I could create a higher-level Activity

with the ones shown being sub-Activiities, and describe the sequence using an instance of the

ControlLogic class. Other classes such as Sequence and SequencePosition exist to more fully describe

relationships between sub-Activities.

This would permit the creation of a high-level description of the business process, which might be

useful. If I wish to have more detail, to understand, for example, how the quarterly and annual time

series are calculated from the monthly observations, then I would need to use other features of the DDI-

CDI model: Steps, Parameters, and InformationFlowDefinitions. This more-detailed approach is

described in the following section.

1. Steps and ControlLogic
Activities can comprise several Steps, which take specific input and output Parameters. The relationship

to specific Paraneters is indicated with the receives and produces associations. Parameters are objects

described according to the DDI-CDI model, and can be any data or metadata so described.

Steps can be made up of sub-Steps, allowing the Parameters to be at whatever level of granularity

makes sense: you might wish to refer to an entire DataSet, or you might choose to reference particular

Datums within that DataSet from a more-granular sub-Step. The level of granularity is not dictated by

the DDI-CDI model, but by the implementation of it. Rules about how Parameters at the Step and sub-

Step levels relate to each other (i.e., the Datums referenced by a sub-Step must be found within a

DataSet referenced by a higher-level Step) are likewise left up to implementers to determine.

Connection of the Parameters between Steps, where the Parameter produced by one Step is received

for use as an input to another Step, can be deterimed by examining the set of associations and objects

described. In managing workflows, however, it is sometimes useful to have objects which identify these

points of connection. For this, the InformationFlowDefinition class provides a link between the

ControlLogic and its component Steps, and the to and from Parameters which are related through them.

The figure below shows this portion of the model.

 DDI - CDI: Integrating Data for Better Science

71

Figure 20: Process Model Steps and Activities

The flow of a process is governed by ControlLogic. Figure 21 shows how ControlLogic is associated with

other significant classes for describing different aspects of process flow.

 DDI - CDI: Integrating Data for Better Science

72

Figure 21: Detailed Process Model

Deterministic Control Logic consists of Sequences and Conditional Control Logic. Sequences may

themselves contain Sequences and Conditional Control Logic. Conditional Control Logic comes in several

types or flavors including If Then, Else, Loop, Repeat Until, and Repeat While. Conditional Control Logic

also includes logical expressions (the Condition attribute) that evaluate to true or false, indicating

whether executable code associated with a Step (Command Code) or subordinate Control Logic

constructs are to be actioned. Command Code may be provided in whatever form implementers wish –

for Steps, this is indicated in the Scripting Language attribute of the Step. Finally, Conditional Control

Logic may contain Sequences.

For Non-Deterministic Control Logic, we cannot know exactly how the process will be organized in terms

of sequential execution, so instead we describe the resources which are provided to the processing

engine.

Non-Deterministic Control Logic has two subtypes – Temporal Constraints and Rule-Based Scheduling.

Temporal Constraints in turn has two subtypes – Allen Interval Algebra and Temporal Control Construct.

Both Allen Interval Algebra and Temporal Control Construct use enumerations to qualify their type

further. Note that Allen Interval Algebra is a calculus for temporal reasoning useful in describing

complex pairwise temporal relationships across a group of Activities. Temporal Control Constructs, on

the other hand, are useful in describing parallel processing.

 DDI - CDI: Integrating Data for Better Science

73

Rule-Based Scheduling takes a Rule Set and Information Objects as input and produces Information

Objects as output. Rule-Based Scheduling may employ the assistance of one or more domain-specific

Curators to match the Rule’s conditions with real world facts or the current state of Information Objects.

Note that Control Logic is recursive, so that Non-Deterministic Declarative and Deterministic Imperative

constructs can invoke each other, passing the processing off to other types of systems. These

interactions need to be described according to each type of process, such that it invokes the other using

a Step (for Deterministic Imperative) or is indicated in the Rule Set in an appropriate fashion for the

Non-Deterministic Declarative Processing Agent being employed (etc.)

2. Relation to Other Standards
There are several models currently in use which provide a strong basis for the DDI - CDI Process model.

PROV-O is perhaps the best-known of these, giving us a basic set of classes describing Activities (the

things which are done), Agents (the people and organizations which do things), and Entities (the

resources which are operated on/with and produced). This is an extremely general model, and one

which was designed to be made more specific for use in specific applications.

A good example of this is ProvONE. PROV-O has been extended by ProvONE. ProvONE to make it data-

and computer-program-specific. In PROV-O, entities didn’t distinguish data at different level of

specificity. The PROV-O Plan entity lacked the specificity to describe the structure of computer programs

and the specific successions of activities (workflows) that programs create.

Here is the ProvONE Conceptual Model:

Figure 22: The ProvONE Conceptual Model

https://www.w3.org/TR/prov-o/
https://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html

 DDI - CDI: Integrating Data for Better Science

74

DDI - CDI process descriptions can be understood as extensions of PROV-O, and could be mapped to

similar models such as ProvONE. Trace relationships to some of the key PROV classes are indicated in

the DDI-CDI model.

These extensions mostly take the form of Control Constructs which DDI - CDI has borrowed from other

products in the family of DDI specifications, notably DDI Lifecycle. DDI Lifecycle process components

borrowed heavily from OWL-S. (Notably, the Control Construct is a central feature of how DDI Lifecycle

describes questionnaire flows.)

3. Aspects covered by the DDI - CDI Process model
Currently “prospective provenance” and “process provenance” are not in scope. In prospective

provenance plans and programs have a hand in guiding execution. Process provenance is about

workflow evolution over time. Workflow evolution is integral to machine learning experiments which

might evaluate a succession of workflows. (Workflow evolution may be addressed by DDI – CDI in

future.)

For now, the focus is “retrospective provenance” or, again, “data lineage”. When data lineage

enumerates a set of beginning and intermediate on-ramps in a workflow, it is backward data lineage.

When data lineage enumerates a set of off ramps for InformationObjects that have entered the

workflow upstream, this is forward data lineage. The DDI - CDI Process model aims to be able to

describe both backward and forward data lineage.

4. Implementation Syntaxes for Command Code
In DDI-CDI, the process description relies on executable syntaxes for the automation of processes. In the

Deterministic Imperative processes, this includes scripts or executables which are triggered through

Command Code. There are two options for how such Command Code can be implemented.

Proprietary syntaxes for the executing program can be used, or standard expressions of the desired

processing – requiring translation into platform-specific syntax – may be employed. In this latter

category, there are two alternatives which deserve mention.

The first of these is the Statistical Data Transformation Language (SDTL). This was developed by the

C2Metadata project, but is now a specification developed and maintained by the DDI Alliance. The

second is the Validation and Transformation Language, created by SDMX.

Implementation choices are specific to application of the model, but should be clearly specified for a

given community of users. It is assumed in the DDI-CDI model that an agreed syntax will be used for the

conditions associated with Conditional Control Logic, as the process descriptions themselves will not be

interoperable without such an agreement. Because Steps may be executed using a variety of different

languages, even within a single system, the option to indicate what language is used is provided.

https://www.w3.org/submissions/OWL-S/

 DDI - CDI: Integrating Data for Better Science

75

X. General Topics

A. Model Features
This section addresses some features of the model which are not specific to the description of data, but

are pertinent to the style of the model itself.

1. The UML subset
DDI-CDI employs the UML Class Model Interoperable Subset (UCMIS), a subset of UML class diagram

items, which is intended for data modeling. It focuses on core concepts that are familiar from object-

oriented programming. The subset focuses on items that describe classes, describe their relationships to

each other, and their attributes.

This subset supports the interoperability of a model, particularly in the form of Canonical XMI.

The UCMIS Git repository including a description of further details can be found at

https://bitbucket.org/ddi-alliance/ucmis/.

UCMIS was developed to include a relatively small set of features that is well-supported by UML tools,

and that leverages Canonical XMI a specific constrained format of XMI that minimizes variability and

provides predictable identification and ordering (see Annex B of the XMI specification:

https://www.omg.org/spec/XMI/2.5.1/PDF).

2. Design patterns
DDI-CDI employs a set of formal design patterns to help guide the consistency of the model generally,

and as a useful resource for modelers. The design patterns are not intended to be directly implemented,

but are connected to the classes in the DDI-CDI Library using <<Refine>> relationships. They function as

“template” models.

Collections Pattern

The Collections Pattern describes groups of members, their organization, and their relationships. A

Collection is made up of Members, which may be Individual Members (atomic ones) or sub-Collections.

Members may have relationships (expressed with Member Relationships) and may be mapped to

members in other Collections (expressed with Maps). Lists are a subtype of Collection, which may be

ordered (using Position).

https://bitbucket.org/ddi-alliance/ucmis/
https://www.omg.org/spec/XMI/2.5.1/PDF

 DDI - CDI: Integrating Data for Better Science

76

Figure 23: Collections

Various types of structural arrangements can be described (with Structure), including a directed graph of

members and their relationships.

Figure 24: Structure

 DDI - CDI: Integrating Data for Better Science

77

Data Description Pattern

The description of data in DDI-CDI uses a set of constructs for identifying Data Points. These are

described using the Key as shown in the Data Description Pattern. A Key Definition is a Collection of the

Concepts which serve to identify the Data Points in a Data Set. It is made up of Key Definition Members,

which are a subclass of Conceptual Value. The Key members are the Instance Values found in the data

which form the Key, and correspond to the Conceptual Values of the Key Definition members.

Figure 25: Keys and Components

Signification Pattern

The Signification Pattern describes how conceptual representations function in the DDI-CDI model. A

Signifier – the perceivable object – is paired with a Signified – the concept or object of thought – by a

Sign.

 DDI - CDI: Integrating Data for Better Science

78

Figure 26: Signification

3. Trace relationships and other standards
The Context package of the DDI-CDI model indicates places where constructs from other specifications

have been incorporated. This is done using the informal UML <<Trace>> relationship which indicates

that the same concept is used in different models. It connects the DDI-CDI model to a set of other

standards, including DCMI Metadata Terms (https://www.dublincore.org/specifications/dublin-

core/dcmi-terms/), PROV (https://www.w3.org/TR/prov-overview/), the Resource Description

Framework (RDF - https://www.w3.org/RDF/), and XML Schema (https://www.w3.org/XML/Schema).

There is no attempt to provide a full mapping to any other specification in this section of the model –

places where DDI-CDI constructs intentionally correspond with those in other models or specifications

have been highlighted, to assist users in understanding and implementing the model.

4. Cardinalities and Validation
The DDI-CDI model uses a subset of the overall features of UML, but does not use the aligned Object

Constraint Language (OCL) for validation purposes (i.e., choices, conditional dependencies). This

supports the interoperability of the model. Even the cardinalities used in the model may not be

sufficient in some cases for validation purposes.

Such information is included in DDI-CDI in the form of UML Notes. Some cardinalities may seem too

open, allowing for the absence of properties or relationships which is counter-intuitive. This is an

intentional style used within DDI-CDI: often, such cardinalities are very specific to the implementation of

the model within a particular system. Users should be aware that some fields which are not required

may need to be required for their own use of the model, and that some of the constraints found in

notes should be implemented in the application of DDI-CDI, as they are not described formally in DDI-

CDI itself.

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/prov-overview/
https://www.w3.org/RDF/
https://www.w3.org/XML/Schema

 DDI - CDI: Integrating Data for Better Science

79

5. Inheritance
DDI-CDI is intended to be implemented in a variety of different syntaxes with differing expressive

capabilities. For this reason, some typical aspects of object models are included in a consistent but

perhaps not typical fashion. In DDI-CDI, abstract classes are found only in the Design Patterns, and not in

the DDI-CDI Library. UCMIS does not use multiple inheritance, and as a consequence only single

inheritance is found in the DDI-CDI model. This supports the interoperability of the model with syntax

representations.

An example is the Selector structured datatype. The deepLink attribute of the Reference datatype has

the datatype of Selector. Selector itself has no attributes. Instead there can be multiple types of

Selectors (currently Text Position Selector and Object Attribute Selector. A deepLink should be able to

use either one, each with its own attributes, for instance a Text Position Selector with start and end

attributes.

Figure 27: Selector Classes

B. Syntax Representation
A model like DDI-CDI cannot in itself guarantee system-level interoperability – it is intended to provide a

basis for interoperable implementations. In recognition of this limitation, it is assumed that

implementers of DDI-CDI will produce implementation guidance to specify which parts of the DDI-CDI

model are being employed. Such implementation guidance should also include necessary information

about controlled vocabularies, syntax representation, and so on.

DDI-CDI provides syntax representations for XML (expressed as XML Schema) and also has RDF

representations described in OWL/Turtle and JSON-LD. These are intended to be reference syntax

representations, and to assist implementers in their work: the DDI-CDI model can and will be

implemented in different ways in different systems.

 DDI - CDI: Integrating Data for Better Science

80

Appendix I: Theory of Terminology3
The theory of terminology for special language is described in ISO 704:2000 – Terminology – Principles
and methods. This appendix is a reformulation of that standard to data and variables. The ideas of
concept and object are used throughout.

Readers might find this overall section very philosophical. Even so, we attempt to make all the ideas
accessible. We adopt a mentalist position for concepts and nothing more. This corresponds to
experience. Likewise, objects are very generally defined, and they correspond to things in the world that
people and systems use. We hope this approach allows the reader to maintain an intuitive
understanding.

A. Objects
In our way of thinking, each thing, physical or not, is an object. A more technical definition is an object is
anything perceivable or conceivable. What does this mean? We will describe what is meant by
perceivable and conceivable in the next paragraphs. For now, accept that the idea of an object is our
most generic one. Each thing is an object.

Perceivable objects are those detectable through one of the five human senses or some other (human-
made) detector, such as a thermometer or a voltmeter. Any physical object in the world is perceivable,
mostly through sight and touch, but the other senses may be used as well. For instance, a sound is
perceivable through hearing. An object may also be perceived through some detector. Examples include
voltage and current (in electricity), and they are perceived through instruments.

Objects may also be conceivable, and these come in two main kinds: abstract and imaginary. Examples
of abstract conceivable objects are variables, laws, and numbers. Examples of imaginary conceivable
objects are unicorns and hallucinations.

B. Properties and Characteristics
We make distinctions among objects by noticing features of them. We refer to these noticeable features
as properties. It is through properties that we distinguish objects from one another. By determining
their properties, we can make distinctions among objects. For instance, one person may be 185 cm tall,
have brown colored eyes and hair, and have medium brown colored skin. Another may be 170 cm tall,
have blue colored eyes and blond hair, and have very light brown colored skin. These properties of each
person serve to help distinguish between the two people.

More technically then, a property4 is the result of a determination either directly or indirectly about
some object. One form of determination is through observation – something humans perceive through
their senses. Noticing the color of a person’s eyes is an observation or direct determination of the eye
color of that person. Another form of determination is through detection by an instrument. An oral
thermometer is an instrument that detects internal body temperature of a person. Observing a reading

3 This Appendix is based on unpublished research by Frank Farance (President, Farance Inc) and Dan Gillman

(Information Scientist, US Bureau of Labor Statistics).

4 The term property is not defined in ISO 704.

 DDI - CDI: Integrating Data for Better Science

81

on the thermometer is an indirect determination about the internal temperature of a person. The
specific observed eye color and internal body temperature are properties of a person.

Since the examples above use perceivable objects, it is important to note that conceivable objects have
properties, too. For instance, consider the rational numbers “three and fourteen hundredths” and
“negative seventeen”. In the same way as with perceivable objects, properties of conceivable objects
are the results of determinations about these objects. Here, the “sign” (in the mathematical sense) of
the numbers is a property of them. The “sign” of 3.14 is positive, and the “sign” of -17 is negative.

When we notice features of an object, it is helpful and often necessary to know in advance what to look
for. We can ask questions, often unconsciously, about objects, such as how tall a person is, the color of
fur on a bear, the sign of a number, the definition of a variable, and so on. These questions can be asked
of all objects in a set of similar objects: all people, all bears, all numbers, all variables. We use the term
characteristic to refer to these questions.

So, a characteristic is an answerable question, capable of being determined, ascertained, or decided
upon. Height, for instance, is an example, and applied to a person begs the question of how tall that
person is. It is capable of being ascertained by measuring the distance from the bottom of the foot to
the top of a person’s head. Properties are the answers to the questions posed by characteristics.
Characteristics of a person are height, eye color, hair color, and skin tone. Example characteristic /
property (question / answer) pairs, taken from the paragraph above, are height has the properties 185
cm and 170 cm; eye color has the properties brown and blue; hair color has the properties brown and
blond; and skin tone has the properties medium brown and very light brown.

The set of possible properties is said to correspond to a characteristic. These properties (those in a set)
form an extensional definition (See sub-section E on definitions below) of the characteristic they
correspond to. In Examples 5 and 6, different sets of properties may correspond to the same
characteristic, depending on needs. In addition, the same property may correspond to two
characteristics. The following Example 1 illustrates this.

EXAMPLE 1: A property may correspond to two characteristics. Consider the following characteristics:
height (of a person) and length of the diagonal (of a television screen). The property 60 inches (5 feet or
152.40 cm) corresponds to both characteristics. Some people are 60 inches tall and some large
widescreen television sets measure 60 inches diagonally across the screen.

C. Concepts
A concept is a unit of thought, and we use characteristics to differentiate them. Consider the concept
“person”. The characteristics of a person include being designed to stand upright on two legs, ability to
talk, age, marital status, height, eye color, and skin tone. There are many others.

Some characteristics are indispensable for understanding a concept. These are the essential
characteristics. An essential characteristic of persons is that they are designed to stand upright. A
delimiting characteristic is a characteristic used to distinguish it from a generic concept. For example,
being designed to stand and walk upright distinguishes people from other primates. The intension of a
concept is the set of characteristics associated with the concept. The extension of a concept is the

about:blank

 DDI - CDI: Integrating Data for Better Science

82

totality of objects to which a concept corresponds. We will address what it means for objects to
correspond to concepts a little later. Figure 29 addresses the issue pictorially.

Characteristics and properties are themselves concepts, and each kind plays a role. The role is how the
ideas are distinguished. The role for a characteristic is the capability of being determined, and that for a
property is the result of a determination. Some concepts can play each role in different situations.
Consider the concept of ball. Balls have color, and some balls are red in color. In this case red is a
property. But if we specialize the concept ball to red ball, then red takes on the role of a characteristic.
For this concept, all the balls corresponding to it are red. It is no longer meaningful to wonder what the
color of a red ball is. Instead, one needs to know if a ball is red colored. There are no other choices. This
puts red on the question (characteristic) side, rather than the answer (property) side.

Example 2 illustrates the importance of establishing essential characteristics for a concept. In particular,
the addition of a single characteristic may have profound influences on the objects in the extension of
the concept. Adding or removing characteristics often affects the meaning of a given concept, changing
the concept itself. Thus, the extension would be expected to change.

A general concept is a concept which corresponds to an indeterminate number of objects which form a
group by reason of common properties. An example is the concept “planets in our solar system”. An
individual concept is a concept which corresponds to only one object. An example is the concept
“Saturn”. In other words, a general concept may have any number of objects in its extension, and an
individual concept must have exactly one object in its extension.

EXAMPLE 2:

The concept of planet was revised in 2006 by the International Astronomical Union. This revision
resulted in the elimination of Pluto as one of the planets in the solar system. Pluto was long
considered the ninth planet in the solar system, but some astronomers questioned this classification.
Several properties Pluto possesses differ markedly from those of the other planets. Additionally,
recent advances in astronomy - much better telescopes and vastly improved computation - showed
there are many more celestial bodies that could be considered planets if Pluto remained one.
Therefore, a concerted effort was made to define “planet” in a more limiting way.

The concept of a planet is now defined by these four essential characteristics: A planet is a celestial
body that
1 Is in orbit around a star
2 Contains sufficient mass to maintain a nearly spherical shape due to its own gravity
3 Is not massive enough to cause thermonuclear fusion in its core
4 Has “cleared the neighborhood”, i.e., become gravitationally dominant, so the only other bodies

in its vicinity are its satellites

This fourth characteristic is what eliminated Pluto.

 DDI - CDI: Integrating Data for Better Science

83

Note, a concept might be so defined that there exists only one object in its extension even though the
possibility for more exists. This is still a general concept. For example, the notion “all planets with one
moon” is a general concept. Even though there is one known planet with one moon – Earth – the
possibility there are more cannot be ruled out.

The following Figure 28 shows the relationships between concepts and characteristics on the one hand
and objects and properties on the other. The figure illustrates the correspondence between a concept
and all the objects in its extension. The parallels between this construction and how data are obtained
through surveys, experiments, clinical settings, and other kinds of observations is clear. This parallel will
be discussed in Appendix II.

Figure 28: Concept - Object Correspondence

D. Signifier, Signified, and Sign5
A signifier is what is written down in place of, to denote, an object. We refer to objects through
signifiers, and a signified is the object we refer to. For instance, the numerals 5 and 6 are often used to
denote the numbers five and six. Here, the numerals are signifiers, and the numbers are signifieds. Note
here that numbers are concepts, but we are also saying they are objects. This is true in general –
concepts are conceivable objects.

It is possible for one signifier to denote several objects (homographs), and it is possible for more than
one signifier to denote a single object (synonyms). When a signifier denotes a signified, we refer to this
association as a sign. See Figure 29 for a pictorial explanation of signs, consistent with the wording in
this section.

5 This is outside the scope of ISO 704.

 DDI - CDI: Integrating Data for Better Science

84

The following is a list of kinds of signs for which the signified is an object:

• A label is a linguistic sign for an object

• A name is a non-linguistic sign for an object, where the signifier is an alphanumeric string

• An identifier is a label or name intended to be used for dereferencing

• A locator is an identifier with a known dereferencing mechanism

The following is a list of kinds of signs for which the signified is a concept:

• A designation is a sign for a concept

• A code is a non-linguistic designation

• An appellation is a linguistic designation for an individual concept

• A term is a linguistic designation for a general concept

• A numeral is a code for a number, where a number is a concept

Figure 29: Structure of Signs

E. Definitions
A definition is a descriptive statement which serves to convey the meaning for a concept, and it
differentiates it from related concepts. There are 2 kinds of definitions. An intensional definition is a
definition that describes the intension of a concept by stating the superordinate concept and the
delimiting characteristics. An example of an intensional definition is the one just above for defining the
term intensional definition. An extensional definition is a definition of a concept formed by
enumerating its subordinate concepts under one criterion of subdivision. An example of an extensional
definition is to define a planet in our solar system as Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Uranus, or Neptune. Note, both kinds of definitions depend on knowing the definitions of other
concepts to fully understand the concept under study.

 DDI - CDI: Integrating Data for Better Science

85

Appendix II: Datums and Variables

A. Introduction
Here in Appendix II, we explain data and variables from the perspective of the terminology theory we
laid out in Appendix I. We use the terms defined in Appendix I to create a framework for data and
variables. Note, we will define data using the singular, datum. When referring to more than one datum,
we use datums. This Appendix provides a thorough understanding of data and variables as used in DDI-
CDI.

The underlying theory for understanding data and variables is the same as that for concepts and terms.
We start by defining a datum as a kind of designation and develop the connections from there. The
connection between concepts and their corresponding objects is precisely what variables do.

Data are often described by what they do, the operations and statistics available to process them. And
from the point of view of a collection of data, this might be all one can say. The terminological approach
is an attempt to define what a datum is.

Variables are described in DDI-CDI through levels of specificity. This is known as the variable cascade,
and it enhances reuse of metadata, an important principle of metadata management. How the cascade
ties back into the terminological view of data and variables is also described.

B. Data
This section contains a description of the connection between data and terminology. A datum is defined
as a kind of designation. The idea of a designation is defined in Appendix I.D (Signifier, Signified, and
Sign).

A Datum is a designation of a value, where a value is a concept with a notion of equality defined.

A fundamental requirement for a datum is that it can be copied. Whether a system managing data uses
a computer or is based solely on paper and pencil, data are copied from one storage medium to another
regularly. For instance, in computers data are moved from disk to internal memory to internal registers
and back during the execution of a process. Copies need to be made faithfully, and the only way to
ensure this is to compare a copy with its original. If a copy is equal to its original, the copying process is
faithful.

The ability to copy faithfully is dependent on establishing equality between an original and a copy. In a
paper and pencil system, this is done by visual comparison. On a computer, this is accomplished as the
result of the engineering behind the design of a machine. Faithful copying is inherent to the successful
operation of a computer.

Each time a copy of a datum is made, it is rather trivial to compare the signifiers. But the associated
concepts need to be the same too. Any concept may have an equality operation defined for it. For a set
of values, the same equality operation is sometimes defined for the entire set, and this leads to the
construction of datatypes. See ISO/IEC 11404 – General purpose datatypes. Assigning an equality
operation to a concept implies that if, say, two people say they have that concept, a determination of

 DDI - CDI: Integrating Data for Better Science

86

equality between them can be made. For example, two people agree they have the same gender. This
operation may be different depending on the situation. In fact, more than one measure of equality can
be defined for any given concept. See Example 3.

Example 4 illustrates values associated with social conventions.

A datum is often generated in some context, and this context is what connects it to Figure 29 and to the
connection between concepts and objects. Suppose we consider the object Donald Trump, and we
determine he has orange hair. Donald Trump is an object, and we can find a concept for which he is in
its extension. We know, for instance, he was president of the United States, so he is in the extension of
the concept of presidents of the US. This concept has characteristics, and one of them is hair color (of a
president). For argument’s sake, suppose all the possible hair colors of presidents are Brown, Gray, and
Orange. Thus, each president (each object in the extension of the concept presidents of the US) has one
of the possible hair colors. Washington’s hair color was Gray, and Obama’s is Brown. In each case, the
appropriate one must be determined. So, the possible hair colors are properties corresponding to the
characteristic hair color.

Now, assuming that the hair colors Brown, Gray, and Orange are all the ones possible, every president is
assigned one and only one color. Hair color divides the extension of presidents of the US into subsets
that are disjoint, i.e., each president is assigned to one and only one of the subsets – each president has
one hair color. The subsets are defined by the properties. In this case, there are 3 of them: Brown, Gray,
and Orange. As stated above, no president belongs to more than one subset, and every president
belongs to at least one.

When we determine the hair color of a president, we might want to record that, so we assign signifiers
to each of the possible properties: for instance, b for Brown, g for Gray, and o for Orange, and through
this assignment we create designations called codes. Again, by observation, we have a way to decide if
two presidents have the same hair color, and this is based on light reflectivity and color reception in the
judge’s eyes. So, there is an equality operation for each of these properties. This means each of the
properties is a value, each code is a designation, and when we assign a hair color and write down a
signifier representing the property, a datum is produced.

Examples 5, 6, and 7 illustrate the same ideas presented above on hair color, this time using marital
status and winning probabilities.

EXAMPLE 3: Consider the natural number “seventeen”. It is a concept, and its extension is all situations
of 17 objects. Equality may be defined as it is commonly understood for natural numbers. Another
way to define equality for natural numbers, including “seventeen”, is to ask if the number is even or
odd. In this situation, all odd numbers are equal, and all even numbers are equal.

EXAMPLE 4: M for married, as in some person is married. Married is a value since marriage is a social
and legal status controlled by the state. Equality may be determined by referencing the meaning in
common law.

 DDI - CDI: Integrating Data for Better Science

87

C. Variables and Aggregates
Variables and aggregates are characteristics in the sense previously described. Variables are mostly
characteristics for general concepts, and aggregates are mostly characteristics of individual ones. This
corresponds to the notion that a variable is a mapping between some collection of units (the extension
of the general concept for which the variable is a characteristic) to a set of values (properties). An
aggregate does the same, except the concept is an individual one, so there is one unit – the aggregate.

There are some exceptions. In socio-economic statistics, a household income is the sum (an aggregation)
of the incomes of each of the individuals in that household. This aggregate applies to a general concept
(i.e., households).

Table 1 shows how the terminological constructs described correspond to common notions about data
found in socio-economic data.

EXAMPLE 5: Subdividing people based on marital status
Concept = people of the UK
Characteristic = marital status
Properties = {single, married, divorced, widowed}, where “single” means never married and the rest
correspond to their usual meanings. The signifiers S, M, D, and W designate these concepts,
respectively.

EXAMPLE 6: Second example of subdividing people based on marital status
Concept = people of the UK
Characteristic = marital status
Properties = {single, married}, where “single” means not married and married takes its usual meaning.
The signs S and M designate these concepts, respectively. The purpose of the example is to show that
more than one set of properties may apply to a characteristic of a concept.

EXAMPLE 7: Subdividing gambling casino games based on probability of winning
Concept = gambling casino games
Characteristic = probability of winning
Properties = {x | 0 < x ≤1} (the set of all numbers, x, such that x is greater than zero and less than or
equal to one), where x is a probability. The signs are the numeric strings that designate the numbers,
to some agreed upon precision, fixing the lengths of the strings. Here it is possible that each possible
probability has no more than one game assigned to it. Some may have none.

 DDI - CDI: Integrating Data for Better Science

88

Socio-Economic Data Terminology

Unit Type or Universe Concept

Microdata General concept

Macrodata Individual concept

Frame Extension

Variable or aggregate Characteristic

Unit Object (in the extension of the concept)

Observation (or estimation) Property

Table 1: Socio-Economic Data versus Terminology

D. Variable Cascade
In DDI-CDI, the variable cascade is the way the descriptions of variables are organized. The main purpose
of the cascade is to increase the reuse of metadata. The features defined at each level of the cascade
don’t depend on features at any of the lower levels. Because of this, the descriptions at each level are
reusable.

The cascade consists of four levels, each level corresponding to an ever-increasing descriptive detail. The
levels in the cascade are

▪ Concept
▪ Conceptual Variable
▪ Represented Variable
▪ Instance Variable

The names of the levels indicate to the user what the focus of the description is at each. The Concept
and Conceptual Variable provide details about the concepts employed. The Represented Variable and
Instance Variable provide the details about the codes, characters, and numbers representing the
concepts at the higher levels.

We will describe these levels and show how they fit into the terminological approach in the following
sections. In tables in each section, we illustrate the approach with two examples. The attributes are
taken from the class diagram of DDI-CDI. We only illustrate the attributes at each level. The inherited
ones from the level above are assumed. See section VII-D for a description of the variable cascade from
the point of view of the DDI-CDI model.

1. Concept
The variables about some subject share that subject as common among them all. For example, all
variables in use in data sets in a research library about marital status share that concept among them all.
There may be little in common about the marital status as measured in each variable, but marital status

 DDI - CDI: Integrating Data for Better Science

89

itself – the fact there are statuses across societies or cultures – is a common characteristic. The concept
expressing this commonality is the purpose of this highest level.

The concept at this level is very generic because it must account for all possible variations of the more
specialized versions attached to each variable that makes use of it.

Concept

ID Name Definition

1 Marital status Category of current marital arrangement

2 Age Whole number of years of operation

2. Conceptual Variable
The Conceptual Variable is the level at which most of the concepts used to describe a variable are
applied. The main concepts are the characteristic, which defines a variable, and the properties
corresponding to the characteristic. In our marital status example, the main concepts are:

▪ Characteristic: marital status
o The specialized nature of this concept is that it is applied to people living in the US (for

instance)
▪ Properties: kinds of marital status

o Single
o Married
o Divorced
o Widowed

This example emphasizes that at the conceptual variable, the characteristic and properties are concepts.
Suitable properties form an extensional definition for the characteristic. In our case, single, married,
divorced, and widowed form an extensional definition for marital status. The properties are known as
substantive values in DDI-CDI.

Additional concepts are those associated with missing data. These are known as sentinel values. The two
most important ones that the statistical packages use are “missing” and “refused”. There might be
others, depending on processing needs.

 DDI - CDI: Integrating Data for Better Science

90

Conceptual Variable (Links to Concept)

Name Marital Status Age

Concept Concept #1 Concept #2

Unit type Person Business establishment

Substantive
Conceptual
Domain

Single
Married
Divorced
Widowed

Count (of years), top
coded at 25

Sentinel
Conceptual
Domain

Missing
Refused

Missing
Refused

In this table, the names of the categories for marital status in the substantive conceptual domain are
there in place of actual concepts. The only way to write down a concept is either through providing a
definition or providing an unambiguous term or word denoting it.

3. Represented Variable
The main addition at the Represented Variable level is the signifiers for the properties or substantive
values. Assigning signifiers to concepts turns them into designations. So, in our example, we might end
up with the following designations:

▪ <s, single>
▪ <m, married>
▪ <d, divorced>
▪ <w, widowed>

The set of these designations is a substantive value domain. As discussed, the underlying concepts form
an extensional definition for the characteristic, the concept associated with the variable. So, these
values (properties) are associated with the subject matter of the variable, not with processing. A
substantive value domain can be used by many Represented Variables, so it is important to identify and
manage them.

 DDI - CDI: Integrating Data for Better Science

91

Represented Variable (Inherits from Conceptual Variable)

Name Marital Status Age

Universe Deer Hunters Gun Shops

Substantive Value
Domain

<s, Single>
<m, Married>
<d, Divorced>
<w, Widowed>

Count (of years)
represented with 2-digit
Arabic numeral

Unit of Measure N/A years

Intended
Datatype

Nominal Quantitative discrete

The Intended Datatype Family attribute above needs some explanation. The interpretation of datatypes
in this document is contained in the international standard ISO/IEC 11404 – General purpose datatypes.
See https://standards.iso.org/ittf/PubliclyAvailableStandards/c039479_ISO_IEC_11404_2007(E).zip for a
freely available copy of the standard.

We can interpret the use of the idea datatype in two ways. The physical (or application) datatype tells us
how data are stored on some medium. In some data store, the byte containing the bits 00110010 can be
interpreted in two ways. With lowest order bit on the right, this byte either represents the number 50 or
the numeral 2 in the ASCII character set6. A datatype of integer tells us to interpret the byte as the
number 50. As a character, we interpret it as the numeral 2. Therefore, the physical datatype is often
just an approximation of what is needed to describe values. Instead, it corresponds to how the values
are written in a file. The actual use of the values depends more on the Intended Datatype at the
Represented Variable level.

For the reader of data in some application, there is a secondary issue. How do we use the data we read?
Let’s consider the FIPS7 State Codes, an encoding of the states in the US. The codes are numeric, and
there are 56 entries, including the 50 states; Washington, DC; and other areas. The state of Vermont has
code 50. These could be stored as integers or numeric strings. In our example above, we show 50 stored
as an integer. But, either way, the interpretation of the data is that they represent categories. Codes
have no arithmetic properties. The intended datatype shows the user how to interpret the data. In this
case the intended datatype is nominal (categorical data with no order).

Nominal, Ordinal, Interval, Ratio, Quantitative, Qualitative, Discrete, and Continuous are names of
intended datatypes typically used in the statistics.

6 For this character data, we use little-endian to interpret these bits.

7 Federal Information Processing Standards in the US.

about:blank

 DDI - CDI: Integrating Data for Better Science

92

4. Instance Variable
Moving further down the chain to data, we get to the Instance Variable. An Instance Variable is intended
to be a variable used in a data set. For each data set, new Instance Variables are created.

The main addition in specificity is turning the sentinel categories into designations. Further, the list of
sentinel values (designations) is managed in one set, the sentinel value domain. Separating the
substantive and sentinel value domains eases the burden on metadata management. Changes needed in
one kind of value domain do not affect the other.

An example of the designations in a sentinel value domain is:

▪ <m, missing>
▪ <r, refused>

Since, the Instance Variable is associated with data in a data set, then the physical datatype of the data
for that variable is necessary information as well.

Instance Variable (Inherits from Represented Variable)

Name Marital Status Age1

Population US Deer Hunters in 2019 US Gun Shops in 2019

Sentinel Value
Domain

<1, Missing>
<2, Refused>

<1, Missing>
<2, Refused>

Function demographic establishment

Physical Datatype 1-character 2-integer

The codes used to designate the sentinel categories are often provided by each statistical package. This
topic will not be addressed in detail here.

The Physical Datatype addresses the kind of data as written on a file. The value $2.60 (two dollars and
sixty cents) is often written as a real number with 2 decimal places. But monetary amounts don’t follow
all the rules for real numbers. The amounts at the third decimal place or after are truncated. The values
are not rounded, as real numbers will be. This influences computations, as the following example
illustrates:

Take the average of $1.50, $1.30, and $1.00. The arithmetic average is $1.2666. The rounded real
number average is $1.27, and the monetary, or scaled number, rounded average is $1.26. The reason is
the fractional penny is dropped in the scaled situation. And the rules for scaled numbers correspond to
how banks handle money.

